

EU activities for reducing impacts of freight train derailments

DG MOVE B2 / ERA

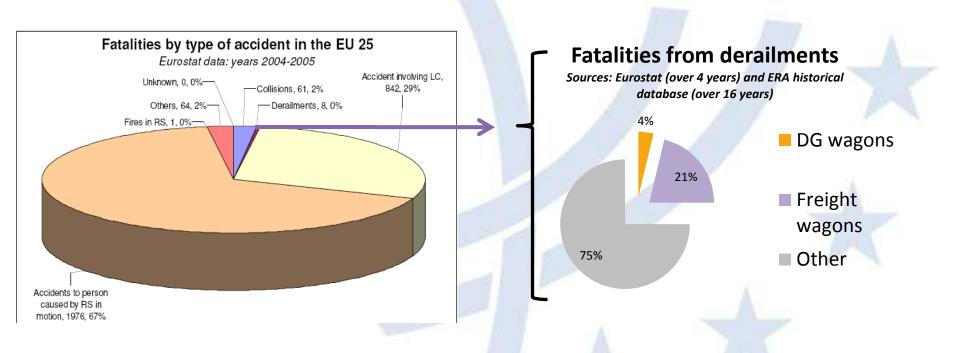
EC Mandate - end 2007

Mandate to the Agency to issue a <u>Recommendation</u> to the Commission on the decision of RID to impose the use of mechanical derailment detectors (according to the article 6.2 and 6.4 of Agency Regulation)

The recommendation is supported by an <u>Impact Assessment</u> fulfilling the corresponding EC Guidelines (SEC(2005)791 and revised annex).

A <u>consultation of Social Partners</u> (CER, EIM, ETF) on the basis of the draft recommendation, according to the Article 4 of the Agency regulation.

Besides the mandatory consultation of the social partners, the NSAs have been invited to give their comments to the Agency about the draft recommendation and the impact assessment.


Agency reports and EC consultation planning

	2008				2009													
	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Oct	Nov			
Information on study progress delivered to the RIDCE meeting (21-23 Oct)					A.		1				4	1			b			
Intermediate report (methodology, progress, preliminary results) delivered to DG TREN											/							
Presentation of the intermediate report to A21C and A9C meetings					4	7		j										
Final report on the Impact Assessment sent to DG TREN					N		4						7					
					EU C	onsul	tatior	proc	ess				7					
Draft recommendation sent to DG TREN		-		Draft							00							
Consultation of Social partners *				2 /							- 🗥							
Final recommendation sent to DG TREN	\						Final											
EC consultation, including committee meetings						-	Α					Ų.						
Commission document sent to the Secretary General of OTIF			y	7		.)		V.										
Discussion of RID 2011 provisions by RIDCE in the Autumn 2009 session			1	y														

⁻ EU activities for reducing impacts of freight train derailments – (2007 - 2009)

Overall figures on EU derailment fatalities

The derailments of DG wagons, with involvement of the dangerous goods, resulted in 3 fatalities over the last 16 years.

Derailment risks assessment Main references

Main sources for risk assessment methods:

- ERA recommendation on Common Safety Methods,
- RID Guidelines on calculation of TDG risks by rail,
- Relevant reports on the risks of DG transport by rail in Switzerland,
- Risk assessment reports, methods from Netherland and France.

Considered options

Option 0: The reference situation in EU-27 in 2008

Option 1: Voluntary use of DDD (Not quantified)

Options 2:

2.A.: The mandatory use of the DDD according to proposed RID 2011 provision

2.B.: Potential extension of application scope to all DG wagons

Option 3: The use of DDD on all freight wagons

→ Not assessed : Option 4: Prevention of derailments

Derailment risks assessment Data sources

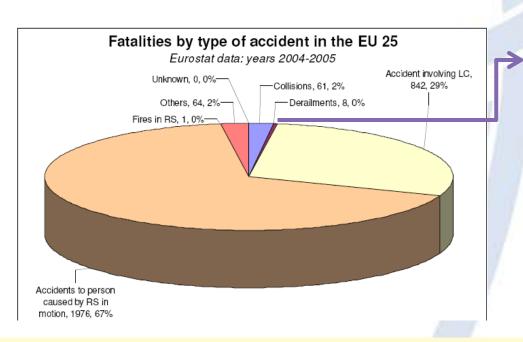
Main sources for EU wide derailment data:

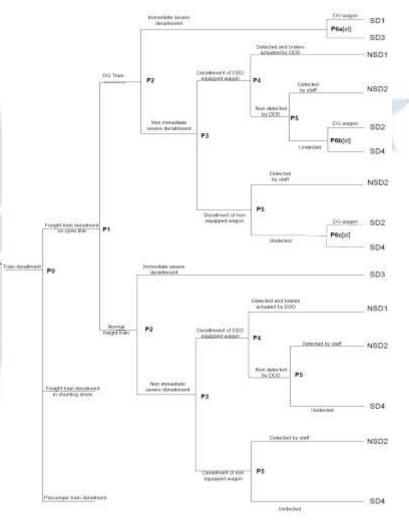
- EUROSTAT data on freight traffic (including DG), accidents, population density,
- ERA 'Historical accident database', including railway accidents data since 1990,
- Collection of freight derailment data from National Safety Authorities and National Investigation Body networks.

Derailment risks assessment Freight derailments lessons

The Agency received from NSA and NIB networks

- ✓ 251 filled-in questionnaires from AT, DE, EE, ES, FI, HU, LT, LV, PL, SE, SK, UK and NO
- ✓ Including some comprehensive surveys
 - IT reported a comprehensive list of 45 derailments over 7 years,
 - DK reported its synthesis from 235 derailments,
 - FR reported a comprehensive list of 160 derailments over 10 years
- ✓ In total, information on 691 derailments, with various level of details, were collected spanning a period over more than 10 years.




Applied Methodology

Step 1:

Likelihoods of freight derailment accidents for pre-defined categories

(Railway freight EU-27 – 2008: 815 Mln.Train.km giving 450 Bln.ton.km with 63 Bln.ton.km of Dangerous Goods freight)

Derailment risks assessment Derailment categories

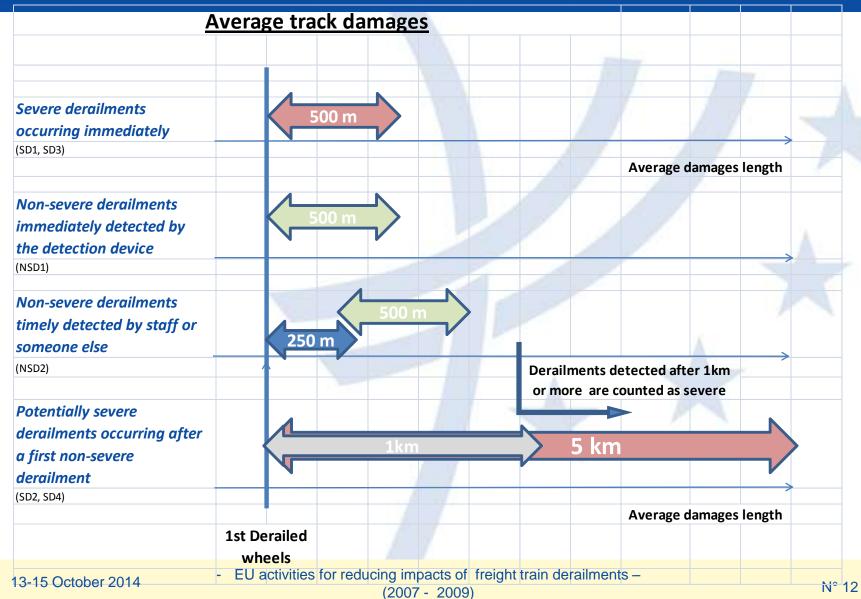
The following categories of derailments are considered in the event tree:

- ☐ Severe derailments (with potential for wagon overturn):
 - Occurring immediately
 - Involving DG wagon
 - Not involving DG wagon
 - Occurring some time after first undetected derailment:
 - Involving DG wagon
 - Not involving DG wagon
- ☐ Non severe derailments (with or without DG wagon):
 - Detected by the DDD
 - Detected by the driver or other persons

→ NSD1

 \rightarrow SD1

 \rightarrow SD3


 \rightarrow SD2

 \rightarrow SD4

→ NSD2

Derailment risks assessment Derailment severities

Present situation of EU 27 derailments

Each year, around 600 freight train derailments have to be considered, following these categories*:

198 (33%) Severe**: occurring immediately,

121 (20%) Potential to end up severe : not detected initially

281 (47%) Not severe: timely detected.

Average derailments severity

Track kilometre damages

Number of wagons impacted

Hours of line closure

Environment damages

(500 m to 5 km)

(2,5 to 10 wagons)

(12 to 50 hours)

(145 to 2000 K euros)

^{*}according to the consultation of NSAs and NIBs networks; **with potential to lead to important human or financial impacts

Applied Methodology

Step 2:

Severity <u>assessment of freight</u>
<u>derailments</u>, including potential outcomes
from the involvement of Dangerous
Goods wagons

Step 3:

Cost Benefit Analysis of the various options related to the potential use of the derailment detection device

		Impacts on Safety (human and environment)	Impacts on Economics	Legal Impacts	
100	Option 2a				
	Option 2b				
	Option 3				
	Option 1				

Applied Methodology

								1 51 1					
	- 1	Option 0 Societal, Environmental and Economical Risks Urrence Frequency Population Victims Railway system											
	Quantified scenarii involving Po		Population Population		Victii	ms	W		Railv	ay system	Т		Dan aged
		U	within lethal	Fatalitie	ies	Injuries		Damaged trac	ks Daman	ed wagons	Operation (disruption	environment
		stance	area	1 atailties		Injunes		Damagea trac	Damag	ou wagono	Operation disruption		CHVIIOIIIICH
	N	b/Y	Nb	Nb/Y	Y •	Nb / Y		km / Y	N	b/Y	h/	Υ	One
Pool fire	•0	,872	0,046	● 4,03E-02		4,03E-01							n
V/E DIS ME	CO	. 15	.63	,0 E-	(5)	5,01E-0							
		, 06	67.2	3,62 E-(5	3,62E-0 1,52E+0							
VCE LPG	0,585 0,005		2,598	1,52E+									V
Jet Fire LPG Chlorine (50mm breach)	0,005 0,005		0,346 38,975	1,68E-03 1_94E-01		1,68E-0		see below	202	below	see b	elow	see below
Ami onia (50mm breach)	-	0,005		116F-	-02	1,16E-0	_	300 D010W	300	DOIOW	300 0	CIOVV	3CC DCIOW
Fires Dla S 4 O O		735	(,17)	474	-01	4,74E+0			_ • 1				
Delutic to En iron next	ノロ	31	NC	J NO		NQ			201	VA/	711		
					-	1			\all	VV	dV		
Less significant (with or without DG substance involvement)*	16,628		0,046	7,68E-	-01	7,68E+0	00	· ·		ailw			r r
Class1 (with or without DG substance involvement)	2.077		NQ	NQ	•	NQ							
Class7 (with or without DG substance involvement)		.103	NQ	NQ		NQ				L			
The consequences of those accidents have probably been ov	erestimated	,		\sim			/				\mathbf{m}		0
NQ= lot Quantified				-	— G				<u> </u>				0
	Nb/Y	ME/Y		Nb/Y M	ΛΕ/Υ	Nb/Y ME	E / Y	km / Y ME	/Y Nb/Y	ME/Y	h/Y	ME/Y	ME/Y
			SD1					6 2	117	3	584	9	n
Severe DG wago derailments pith substant and become with	19	48-	SD2'	3,0	4,6	30 6	5,1	0 6	00 90	000	+00	0	11
Severe DG wago deraiments phastam and emants	IV	\mathbf{O}			Ų			36	7	a	356	5	
 			SD1				П	7 3	14	103	703	11	m
Severe DG wagon derailment without substance involvement	23	31	SD2'					0 0	0	0	0	0	1111
5 11			SD2	1,0	1,5	2 (),4	43 6	86	2	428	6	
Jorailm	OF	tic	SD3					86 34		21	8613	129	۵
Severe de ailm, ht et a na rmal fre ght wa gol		356	SD4	100				525 79		13	5246	79	-
Severe Derailments	240	125	OD !					320 70	1070	, ,,	02.10	, , ,	
	319	435			_								
Derailments mitigated by the Derailment detection device	0	0,0	NSD1	0	oS	2 0),4	0 0	0	0	0	0	n
Detected by station and area	1 78C	35,6	NSD2			2	,, T	211	704	4	3377	25	
Non severe deraimens	4	36	197			,			_	•			- 0
Non Severe delanine his	201	30											
All considered derailments	600	471		4	6.1	34	7	913 13	6 3890	46	19307	284	11

Conclusions on studied options

	Impact on Safety (human and environment)	Impact on Economics	Legal Impact
Option 2a	Reduction of fatalities < 0.1 per year	- 5 M Euros (but some costs are not counted)	Disproportionate action TSIs impacts Only one DDD product
Option 2b	Reduction of fatalities < 1 per year	- 34 M Euros	Disproportionate action TSIs impacts Only one DDD product
Option 3	Reduction of fatalities < 1 per year	- 192 M Euros	Disproportionate in regards Safety aspects EN standards are required
Option 1 (voluntary use)	Reduction of fatalities << 1 per year ?	Sector should check its economical interest	Voluntary users have to respect the existing EU legal framework

Impact Assessment results

Safety (1/2)

The DDD Provision (Option 2a) does not significantly contribute to the reduction of the overall human risk level applicable to the EU railways -> less than 0.1 fatalities over 1500 fatalities per year

The main costs and benefits (All options) related to the freight train derailments are incurred by IMs and RUs and due to infrastructure and rolling stock damages as well as operation disruptions.

Automatic train stopping, without override function, might be inconsistent with the existing emergency procedures within the EU Member States, especially in tunnel contexts, and might induce new risks not sufficiently assessed and managed

Impact Assessment results

Safety (2/2)

The potential catastrophic consequences of derailments involving dangerous substances are most likely to arise in specific vulnerable locations.

The EU member states have the possibility to use the Article 1.4.b) of the Directive 2008/68/EC and the Article 1.9 of its RID annex for managing local and time dependent risks with local solutions.

A definition of risk acceptance criteria, <u>common for all inland transport</u> <u>modes</u>, adapted to the particular risks of dangerous goods, might facilitate the implementation of local solutions, commonly accepted by the concerned parties, and without discrimination of a given transport mode

Impact Assessment results


Interoperability

The DDD Provision might require several amendments of the existing Technical Specifications of Interoperability of the trans-European conventional rail relating to the subsystem "Rolling stock – Freight wagons" and to the subsystem "Traffic Operation and Management"

The implementation (including application of existing TSIs) of the *DDD*Provision would induce costs to the sector which might not be compensated by the expected safety benefits

2009 reports

2009 Workshop agreement

RISC and Inland TDG Committee agreed on the following actions

"A study on derailment preventive measures (which would lead to better impact assessment results)."

"A market research on products that meet the DDD provision in its current version (EDT 101 type) and/or in the version modified."

"A study on the impact of false alarms and the level of reliability that should be imposed for DDD (EDT 101 type)."

"A study on the impact of automatic braking and false alarms in tunnels/bridges.

2009 Workshop agreement

The Workshop of RISC and Inland TDG Committee agreed on the following actions in September 2009

"A study on the comparison of the decision making process in the context of the safety/interoperability directives on one side, and in the context of the RID committee on the other side. This study should also look at the scope of both instruments, as well as at the competences of the RISC/TDG Committees and of the RID Committee."

"A study on the feasibility of harmonizing risk acceptability...of dangerous goods accident... (national level, EU level, RID versus safety directive)."

"Voluntary experiments at national level."

DNV / ERA / EC Work organisation

"A study on derailment preventive measures (which would lead to better impact assessment results)."

"A market research on products that meet the DDD provision in its current version (EDT 101 type) and/or in the version modified."

"A study on the impact of false alarms and the level of reliability that should be imposed for DDD (EDT 101 type)."

"A study on the impact of automatic braking and false alarms in tunnels/bridges .

"Voluntary experiments at national level."

"A study on the comparison of the decision making process in the context of the safety/interoperability directives on one side, and in the context of the RID committee on the other side. This study should also look at the scope of both instruments, as well as at the competences of the RISC/TDG Committees and of the RID Committee."

"A study on the feasibility of harmonizing risk acceptability...of dangerous goods accident... (national level, EU level, RID versus safety directive)."

Det
Norske
Veritas

ERA

Member States

European Commission

		2010			2010			2010			2010			2010			2010		2010		2010		2010				•	•		20	11		•			ď			2012			
		Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Mai	Jun																		
	Kick off Meeting							j		2					1						1		9																			
	Part A - State of play									1	1			9																												
DVIV C+++q++	Workshop														y																											
DINV Study	Workshop Part B - Promising measures																																									
	(short & medium term)												p							-1																						
	Workshop						N			7		1										1																				
	Impact Assessment							4												P	1																					
	(promising measures)																																									
ERA	ERA Draft recommendation															Α																										
	Consultation	1																																								
	ERA Final recommendation									A						-					Final																					
EU	Commitology						1		1						l		1																									

DNV Work organisation

Scope of Det Norske Veritas study

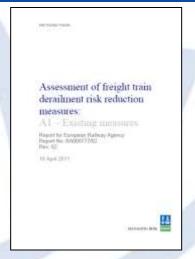
"A study on derailment preventive measures (which would lead to better impact assessment results)."

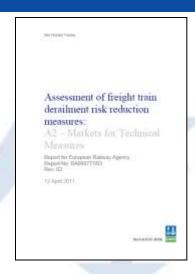
"A market research on products that meet the DDD provision in its current version (EDT 101 type) and/or in the version modified."

Det Norske Veritas (1)

http://www.era.europa.eu/Document-Register/Pages/Freight-train-derailments-relevant-documents.aspx

Det Norske Veritas


Assessment of freight train derailment risk reduction measures:


Part A Final Report

Report for European Railway Agency Report No: BA000777/01 Rev: 01

21 July 2011

Det Norske Veritas

Assessment of freight train derailment risk reduction measures:

Part A Final Report

Report for European Railway Agency Report No: BA000777/01 Rev: 01

21 July 2011

Contains main findings on:

- Existing Measures (P & M)
- Market for Technical Measures
- Functional and performance assessment
- New technologies and approaches

http://www.era.europa.eu/Document-Register/Pages/Freight-train-derailments-relevant-documents.aspx

Det Norske Veritas

Assessment of freight train derailment risk reduction measures:

A1 - Existing measures

Report for European Railway Agency Report No: BA000777/02

Rev: 02

- -> 47 preventive measures
- -> 13 mitigating measures

http://www.era.europa.eu/Document-Register/Pages/Freight-train-derailments-relevant-documents.aspx

Det Norske Veritas

Assessment of freight train derailment risk reduction measures:

A2 – Markets for Technical Measures

Report for European Railway Agency Report No: BA000777/03 Rev: 02

- -> Products' catalogues,
- -> Internet,
- -> Interview with suppliers
- -> Market size
- -> Market share
- -> Market maturity
- -> Price evolutions
- Mechanical DDD considered as a growing market
- -> 2000 wagons equipped in 2011 world-wide

http://www.era.europa.eu/Document-Register/Pages/Freight-train-derailments-relevant-documents.aspx

Det Norske Veritas

Assessment of freight train derailment risk reduction measures:

A3 – Functional and Performance Assessment

Report for European Railway Agency Report No: BA000777/04 Rev: 02

- -> Use of relevant data from A1 and A2,
- -> Interview with IMs and RUs
- -> What measure they use and why?
- -> Effectiveness? Reliability? Experience? LCC?
- -> Plans to introduce additional measures?
- -> some cases supported by inservice data
- -> in general users are not very well informed on actual performance

http://www.era.europa.eu/Document-Register/Pages/Freight-train-derailments-relevant-documents.aspx

Det Norske Veritas

Assessment of freight train derailment risk reduction measures:

A4 – New Technologies and Approaches

Report for European Railway Agency Report No: BA000777/05 Rev: 02

- -> Interview with IMs and RUs
- -> Review of published research/papers on new topics & technology
- -> Consolidation of information on potential risk reduction
- -> Consideration of future market /logistic trends
- -> Electronically controlled pneumatic Brakes
- -> Improved vehicle design
- -> Use of on-board condition monitoring
- -> New brake blocks
- -> Use of acoustic and imaging technology
- -> Active operation monitoring and 'in operation' safety data communication

http://www.era.europa.eu/Document-Register/Pages/Freight-train-derailments-relevant-documents.aspx

Det Norske Veritas Assessment of freight train derailment risk reduction measures: Part B Final Report Report for European Railway Agency Report No: BA000777/09 Rev: 02 20 October 2011 MANAGING RISK

http://www.era.europa.eu/Document-Register/Pages/Freight-train-derailments-relevant-documents.aspx

Det Norske Veritas

Assessment of freight train derailment risk reduction measures:

Part B Final Report

Report for European Railway Agency Report No: BA000777/09 Rev: 02

20 October 2011

Contains an overview of:

- Derailment risk models
- Risk model and potential effectiveness of measures
- Accidents analyses
- Top ten ranking of safety measures

http://www.era.europa.eu/Document-Register/Pages/Freight-train-derailments-relevant-documents.aspx

Det Norske Veritas

Assessment of freight train derailment risk reduction measures:

B1 – Derailment Risk Models

Report for European Railway Agency Report No: BA000777/06 Rev: 02

27 June 2011

- -> Review of derailment accidents
- -> Cause-consequence of derailments
- -> Influence of existing measures
- -> Barrier models
- -> Fault-tree model + combination of causes
- -> Event-tree model

-> Confirmation of validity of ERA 2009 model

http://www.era.europa.eu/Document-Register/Pages/Freight-train-derailments-relevant-documents.aspx

Det Norske Veritas

Assessment of freight train derailment risk reduction measures:

Annex 1 to B2 – Risk model and potential effectiveness of measures (accident analysis)

Report for European Railway Agency Report No: BA000777/07/A1 Rev: 00

08 July 2011

-> Analysis of 201 accidents (in addition to accident analysed in 2009)

- -> Derailment causes
- -> Combined causes

DNV Study

http://www.era.europa.eu/Document-Register/Pages/Freight-train-derailments-relevant-documents.aspx

Det Norske Veritas

Assessment of freight train derailment risk reduction measures:

B2 – Risk model and potential effectiveness of measures

Report for European Railway Agency Report No: BA000777/07

Rev: 02

21 July 2011

- -> Populating risk model with data
- -> Development of Impact model (Human-Railway system-Environment)
- -> Use of the model
- -> Benchmarking/Checking validity of the model approach
- -> Maximum risk reduction potential, with:
 - New measures
 - Extended/Adapted
 use of existing measures
- -> Confirmation of validity of ERA 2009 results

DNV Study

http://www.era.europa.eu/Document-Register/Pages/Freight-train-derailments-relevant-documents.aspx

Det Norske Veritas

Assessment of freight train derailment risk reduction measures:

B3 – Top ten ranking of safety measures

Report for European Railway Agency Report No: BA000777/08 Rev: 03

21 September 2011

- -> Measure identification
- -> Type of measure (technical, procedural, organisational)
- -> Optimal application scope
- -> Risk reduction quantification
- -> Cost-Benefit assessment
- -> Identification of non-quantified advantages and drawbacks
- -> Top ten ranking

Prevention

- WLID/WIM, PRC, BHD, BAM, WPD, SWD Mitigation
- DDD (10th) and not cost effective
- DDD has a drawback confirmed
 Organisation
- Awareness programme on rolling stock maintenance (focussed on main causes – increased supervision)
- Track geometry (increased supervision)

DNV Study http://www.era.europa.eu/Document-Register/Pages/Freight-train-derailments-relevant-document-

Parties involved in DNV's study (summarized in section 3.1 of ERA 2012 report)

. Information was received from the following States and organisations:

- Railway undertakings from 13 EU MS, and from Norway, Switzerland and USA,
- Infrastructure Managers from 15 EU MS, and from Norway, Switzerland and USA,
- 12 suppliers on 31 technological products used for preventing or mitigating derailments,
- CER, UIP and UNIFE,
- Research organisations and internet, as well as DNV's team knowledge.

Conclusions from DNV

http://www.era.europa.eu/Document-Register/Pages/Freight-train-derailments-relevant-documents.asp

DNV Study – Key conclusions

- Confirmed ERA 2009 report's conclusions
 - -> Mechanical DDD not cost-effective
 - -> Automatic braking can trigger a derailment
- > Showed that
 - > more than one mechanical DDD exists on the market
 - ➢ But, many other technical measures than DDDs are more effective and are efficient
- (mainly) Studied technical measures
- Organisation measures should also be considered

ERA 2012 report scope

"A study on derailment preventive measures (which would lead to better impact assessment results)."

-> including also non technical measures (SMS – EVIC) not covered by DNV + long term measures

"A market research on products that meet the DDD provision in its current version (EDT 101 type) and/or in the version modified."

"A study on the impact of false alarms and the level of reliability that should be imposed for DDD (EDT 101 type)."

"A study on the impact of automatic braking and false alarms in tunnels/bridges .

ERA 2012 report

Sections 4.1, 4.4 & 7

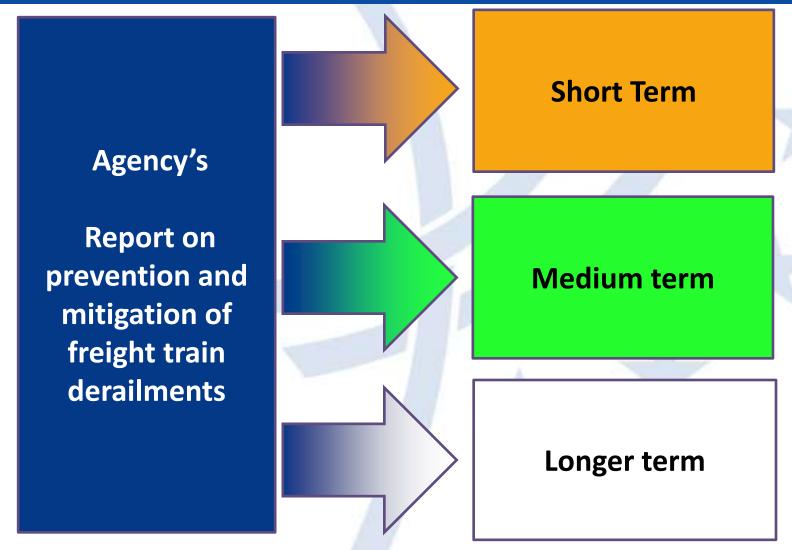
Section 6.1

Section 6.1

ERA 2012 report process (inputs)

DNV Study (task 1)

TF on Wagon Maintenance (now FFG)


Other inputs

Agency's

Report on prevention and mitigation of freight train derailments

ERA 2012 report process (outputs)

DNV's inputs

The Agency

- Checked DNV's methodology,
- Checked inputs and re-assessed DNV's findings,
- Shared and discussed DNV's reports in two workshops (May 2011 and September 2011):
 - Representatives from RISC, TDG/EC, NSA, NIB, RID experts, CEFIC, CER, EIM, ERFA, UIC, UIP, UIRR, UNIFE were invited.
- Received detailed comments from:
 - DK NSA, FI NSA, IT NSA, FR NIB, BE ECM, CER, CH FOT, RID WG TVT, UIC, Rail Cargo Austria, Knorr-Bremse
- -> General agreement on the high quality of the DNV's Study

Agency's Report

The Agency

- Used relevant results from the DNV's study, including answers to detailed comment received from interested parties,
- Complemented with other relevant inputs
- Answered to the questions raised in 2009 by the RISC and TDG EC Committee (1^{st} Slide) in the light of the new findings
- Put in perspective short/medium/long term measures
- Recommended on the most efficient risk reduction actions
- Sent its draft report for consultation to representative associations

Consultation on ERA's report

Consultation from 20/01/2012 to 06/02/2012 of representative associations:

- CER, EIM, ERFA, UIC, UIP, UIRR and UNIFE
- Two answers: UIRR, CER
- -> General agreement on Agency's conclusions including, detailed comments which support / do not affect the general conclusions

ERA 2012 conclusions on derailment detection

Mechanical detectors (M1-a)

- 1) Other measures are more effective,
- 2) M1-a type do not report a clear signal to the driver
- 3) M1-a type can trigger a derailment in case of false alarms
- 4) M1-a type can be used if APIS requirements fulfilled
- -> It means under the responsibility of the applicant if authorisation granted by the competent authority.
- -> Note in RID 7.1.1 section

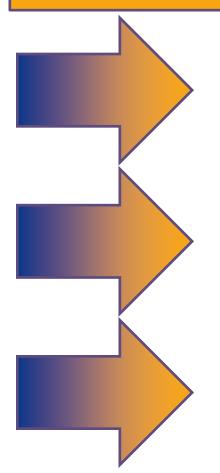
ERA 2012 conclusions on derailment detection

The Agency confirmed its 2009 recommendation to the **European Commission**

RID 2013 adopted a note in section 7.1.1 explaining the (voluntary) conditions for using derailment detections

ERA 2012 conclusions on derailment detection

Electronic detectors (M1-b)


- 1) M1-b type does not exist on the market (2012)
- 2) M1-b type would give a clear signal to the driver
- 3) M1-b type could be compatible with TSIs
- 4) M1-b type potential efficiency to be considered in the framework of telematics developments

ERA agreed to re-assess this option in the light of technical and scientific progress.

ERA 2012 report - Short term

Priority to SMS and maintenance systems

1. Priority is to make safety management system and maintenance system working better

2. More effective and efficient measures than the derailment detection are immediately practicable

3. Derailment detection should be used on voluntary basis if requirements for vehicle autorisation are fulfilled

Medium term

Voluntary approach for (additional) technical measures

1. The Agency recommends a voluntary approach concerning four (4) technical measures assessed as being efficient at EU level (WLID/WIM, PRC, BHD, BAM).

- RUs & IMs must target efficient measures, as a result of a) the implementation of their SMS,
 b) taking into account company and country specific situations
- 3. Priority is to make safety management system and maintenance system working better

Longer term

Longer term measures

For example:

- Wheel/Rail interactions

- Intervention limits concerning track quality

Prepare future developments in IT systems for safety data monitoring and data networking

For example:

- Harmonised real-time monitoring (quality of

wagon/track/train composition)

- Harmonised safety-data exchanges (RUs, IMs & ECMs)

3. Study potential changes in freight fleet design (combined add-values for logistics and safety improvements)

For example:

- Increased use of central-couplings
- Wagons fitted with power supply and data transmission ...

⁻ EU activities for reducing impacts of freight train derailments – (2009 - 2012)

Status of the mandate after 2011 DNV reports and 2012 ERA's report

- ✓ "A study on derailment preventive measures (which would lead to better impact assessment results)."
- ✓ "A market research on products that meet the DDD provision in its current version (EDT 101 type) and/or in the version modified."
- ✓ "A study on the impact of false alarms and the level of reliability that should be imposed for DDD (EDT 101 type)."
- ✓ "A study on the impact of automatic braking and false alarms in tunnels/bridges.

Status of the mandate after 2012 ERA's report

"A study on the comparison of the decision making process in the context of the safety/interoperability directives on one side, and in the context of the RID committee on the other side. This study should also look at the scope of both instruments, as well as at the competences of the RISC/TDG Committees and of the RID Committee."

"A study on the feasibility of harmonizing risk acceptability...of dangerous goods accident... (national level, EU level, RID versus safety directive)."

"Voluntary experiments at national level."

2011 – 2014 EC Studies

Study on interactions between EU legislation and RID

"A study on the comparison of the decision making process in the context of the safety/interoperability directives on one side, and in the context of the RID committee on the other side. This study should also look at the scope of both instruments, as well as at the competences of the RISC/TDG Committees and of the RID Committee."

Study on interactions between EU legislation and RID

Selected consultant: SMITHERS / PIRA

Report delivered on: March 2013

Report accessible at:

http://ec.europa.eu/transport/modes/rail/studies/doc/201 3-03-10-rail-dangerous-goods.pdf

Study on interactions between EU legislation and RID

Main conclusions from Smithers and Pira:

-> Cooperation between ERA and RID Committee is crucial on certain topics

Main concerned topics:

- -> Emergency planning
- -> Railway operation (e.g. ECMs roles and responsibility)
- -> Wagon construction
- -> Reporting of accidents and statistics
- -> Terminology
- -> Telematics
- -> Impact assessment
- -> Multi-modal harmonisation

Use of the study results by DG MOVE / OTIF / ERA

Administrative Arrangement: point 12 establishes the principles for management of TDG interfaces:

- a) Allocation of responsibilities to the railway stakeholders
- b) Railway operations
- c) Wagon construction
- d) Reporting of accidents and statistics
- e) Emergency planning
- f) Telematics applications
- g) Terminology
- h) Risk evaluation and assessment methods
- i) Any other relevant issues.

Study on harmonised risk acceptability

"A study on the feasibility of harmonizing risk acceptability...of dangerous goods accident... (national level, EU level, RID versus safety directive)."

Study on harmonised risk acceptability

Selected consultant: DNV

Report delivered on: March 2014

(draft presented in an EC Workshop in February 2014)

Report accessible at:

http://ec.europa.eu/transport/modes/rail/studies/doc/201

4-03-25-dangerous-goods.pdf

Policy Options for Network Risk Assessment

- A. A new directive on DG safety, and a regulation requiring MS to calculate and report their risk levels in all DG transport modes, equivalent to that currently in place for railways.
- B. Inclusion of DG risks in the existing policy on road safety and legislation on rail safety. Inland waterways could be included by adopting a new policy for all modes of DG transport.
- C. Implementation of the network risk assessment as a research study led by the Commission, using voluntary assistance from MS.

Preferred option is A

21 DNV GL © 2014 14 February 2014 DNV GL

Policy Options for Local Risk Assessment

- A. A new directive on DG safety, and a regulation requiring MS to calculate and report their risk levels in all DG transport modes, equivalent to that currently in place for railways.
- B. Inclusion of DG risks in the existing CSM legislation for railways and development of equivalent CSM for road and inland waterways.
- C. Inclusion of a requirement for a local risk assessment of DG restrictions in the existing Directive on the inland transport of dangerous goods.
- D. Amendment of the guidelines for calculation of risks under Chapter 1.9 of ADR/RID/ADN to follow the harmonised approach.
- E. Promotion of the local risk assessment approach through an independent guideline document, produced by the Commission, in consultation with MS.

Preferred option is A

22 DNV GL (5 2014 14 February 2014 DNV GL

Recommended Changes in EU Policy and Legislation

- A new directive on DG safety in all transport modes. This would include road, rail
 and inland waterways. It would state the harmonised RAC and explain how they
 are intended to improve safety. Where MS intend to apply restrictions on TDG, it
 would require them to make a risk assessment coving the complete scope of
 changes in TDG that may result, and supply the results to the Commission for use
 in the EU level network risk assessment.
- Adjustment of the Commission's existing policy on road safety to include DG risks explicitly.
- Adjustment of the CSTs for rail safety to include DG risks explicitly.

23 DNV GL (5 2014 14 February 2014 DNV GL

Recommended Organisational Steps

- Analyse the data on DG transport activity and incidents that has been collected under existing legislation, in order to produce accident frequencies suitable for the network and local risk assessments.
- Develop a suitable methodology for the network and local risk assessments.
- Conduct an initial network risk assessment as a research study, using voluntary assistance from MS.
- Develop a process for setting the specific values of the harmonised RAC.
- Communicate with MS the priorities for risk reduction that are selected in the network risk assessment, and receive the results of local risk assessments of DG transport restrictions.
- Review periodically the harmonised RAC, in the light of practical changes to DG transport restrictions that they support, and adjust the RAC if necessary.

24 DNV GL © 2014 14 February 2014 DNV GL

Status of the mandate after EC's Studies

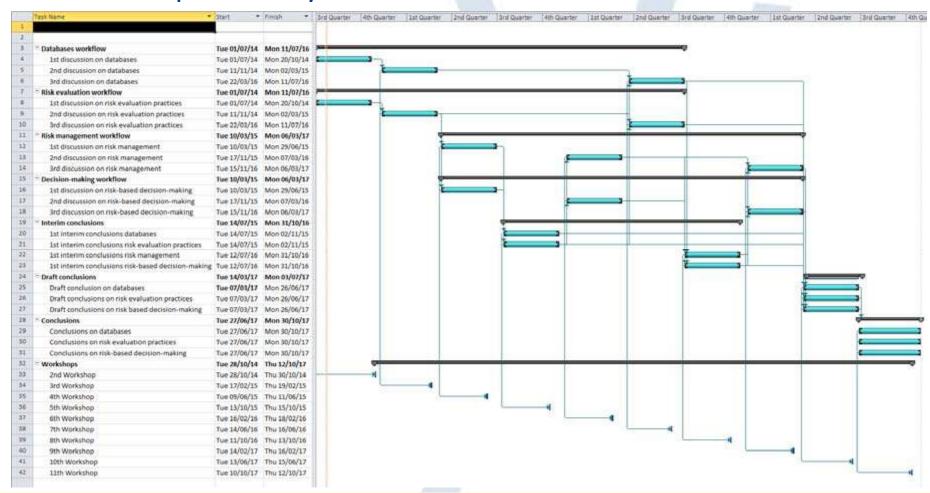
"A study on the comparison of the decision making process in the context of the safety/interoperability directives on one side, and in the context of the RID committee on the other side. This study should also look at the scope of both instruments, as well as at the competences of the RISC/TDG Committees and of the RID Committee."

"A study on the feasibility of harmonizing risk acceptability...of dangerous goods accident... (national level, EU level, RID versus safety directive)."

"Voluntary experiments at national level."

Further steps: Roadmap on risk management

(see INF 16 – UNECE-OTIF Joint Meeting – September 2014)


Objectives:

- To facilitate the exchange of technical information in a structured and well scheduled manner,
- To facilitate the coordination of technical developments by EU, UNECE and OTIF, where relevant,
- To facilitate the development of common practices and guidance documents."

Further steps: Roadmap on risk management

11 Workshops over 3 years

Further steps: Roadmap on risk management

ERA further steps -> Roadmap on Risk Management (see INF 16 – UNECE-OTIF Joint Meeting – September 2014)

"The Agency believes that by the end of 2017 the proposed organization may eventually lead to further recommendations (further technical work or proposals for legislative developments) to the relevant Regulatory Committees in regards the use of risk-based approach for a better harmonization of the management of risks in the inland transport of dangerous goods."

2011 – 2020 Other ERA, EC or Sector activities

Other activities having an impact on the control of derailment risks

- -> Safety Management Systems (SMS) dissemination
- -> Entities in Charge of Maintenance (ECM)
- -> European Visual Inspection Catalogue (EVIC)
- -> European Wheelset Traceability (EWT)
- -> D-Rail research project (October 2011 September 2014)
- -> Shift 2 Rail

Safety Management Systems (SMS)

The Agency developed tools to support the RUs and the IMs

The SMS Wheel

SMS

The SMS website

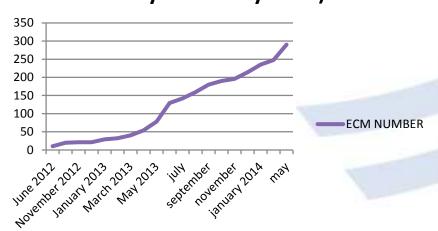
Guidance

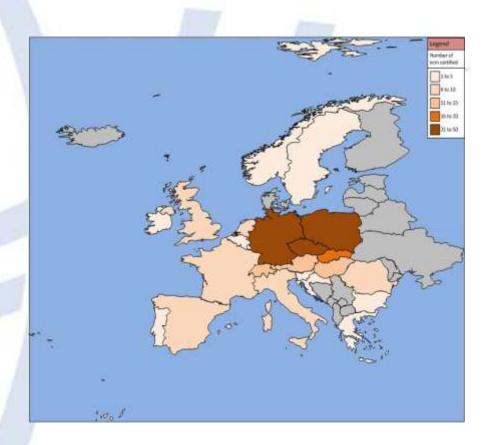
The Agency organised workshops and trainings inside and outside the

EU providing expertise on SMS

Safety Regulatory Framework

Design, implementation and monitoring of SMS


Safety Culture


Risk management & Change management

Maintenance – ECM – EVIC

NUMBER of ECM certificates (May 2012-May 2014)

Number of ECM certificates in EU Member States

UIC – Newcastle University

D-Rail project

Objectives:

Long term and sustainable reduction of derailment impacts

Start: October 2011

End: September 2014

Final conference: Stockholm – 12th November 2014

Organised by:

UIC – Trafikverket – Newcastle University

Shift to rail Master plan (adopted by the Governing board 24.09.14):

"identifying and developing innovative solutions to make the carriage of dangerous goods by rail the obvious number one choice is also essential."

Link:

http://ec.europa.eu/transport/modes/rail/doc/2014-09-24-draft-shift2rail-master-plan.pdf

Thank you for your attention

