JCGE Priority Items

Last Updates: 20 November 2020

1 (TOP) Priority 1: Preventing reoccurrence of legal inconsistency

This mainly concerns new items 1.1) under current discussion for which legal amendments may be adopted in short to medium terms by the Joint Meeting or Committees, or 1.2) with strategic and long-term development characteristics for which a legislative orientation should be advised.

2 Priority 2: Solving current implementation problems for the existing EU/COTIF legislation

In the first instance, this should mainly concern implementing issues relating to the 4RP.

- 2.1) Vehicle authorisation related issues, or
- 2.2) Single Safety Certificate related issues, or

3 Priority 3: Cleaning backlog

This mainly concerns long lasting inconsistencies already discussed by the RID/ATMF working group, which should be resolved, but which do not currently create major implementation issues.

Track changes in table reflect the last update as agreed at the JCGE meeting

<table>
<thead>
<tr>
<th>P</th>
<th>Items identified in the conclusions of the RID/ATMF working group</th>
<th>Description (Excerpt from RID/ATMF final report)</th>
<th>Previous priority level</th>
<th>Rapporteur</th>
<th>Time line</th>
<th>Status /Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 b - Design and construction of vehicles: way of specifying; functional/technic al solutions</td>
<td>The process described in this paper foresees that protection objectives will be included in RID and that the technical requirements to fulfil these objectives would be included in TSI s/UTPs. The RID could then refer to the TSI s/UTPs where feasible.</td>
<td>1</td>
<td>Secretariat</td>
<td>Principle is supported by the JCGE. Consider test cases</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 b</td>
<td>6.8.2.1.2 Tank - wagons shall be constructed as to be capable of withstanding, under the maximum permissible load, the stresses which occur during carriage by rail. As regards these stresses, reference should be made to the tests prescribed by the competent authority. (This requirement is deemed to be met if – the notified body in charge of verifying compliance with the technical specification for interoperability (TSI) relating to the subsystem “rolling stock – freight wagons” of the rail system in the European Union (Commission Regulation (EU) No 321/2013 of 13 March 2013) or – the assessing entity in charge of verifying compliance with the uniform technical prescriptions (UTP) applicable to the Rolling Stock subsystem: FREIGHT WAGONS – (Ref. A 94-02.2.2012 of 1 January 2014) has successfully evaluated compliance with the</td>
<td>2</td>
<td>DE, ERA</td>
<td>At the 3rd JCGE last RID meeting, it was agreed that this issue will be dealt with at national level and presented at the RID meeting should be discussed at the next Standing Working Group. The conclusions and proposal on how to deal with this can be presented to this group. Several options were proposed: - Requirements can be either presented as application guide to the TSI, or - Reference to standards EN 14025 and EN 12663, or - Requirements included in the TSI</td>
<td></td>
</tr>
</tbody>
</table>
provisions of RID, in addition to the requirements of the TSI or UTP mentioned above, and has confirmed this compliance by a relevant certificate.

<table>
<thead>
<tr>
<th>1b</th>
<th>6.8.3.1.6 Tank-wagons and battery-wagons shall be fitted with buffers with a minimum energy absorption capacity of 70 kJ. This provision does not apply to tank-wagons and battery-wagons fitted with energy absorption elements in accordance with the definition in 6.8.4, special provision TE 22.</th>
<th>3, Priority 1: for testing recommended RID/ATMF approach with high level objectives set out in RID.</th>
<th>UIP</th>
<th>Test case for the energy absorption and application of the procedure. UIPI to prepare analyses with an overview of the measures and accident scenarios. 3rd JCGE concluded that RID should first discuss the target, then agree at the JCGE on text proposal for concrete wording in the TSI/UTP. Digital Coupling has to be dealt here as well.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b</td>
<td>Special provision TE 22 In order to reduce the extent of damage in the event of a collision shock or accident, each end of tank-wagons for substances carried in the liquid state and gases or battery-wagons shall be capable of absorbing at least 800 kJ of energy by means of elastic or plastic deformation of defined components of the sub frame or by means of a similar procedure (e.g. crash elements). The energy absorption shall be determined</td>
<td></td>
<td></td>
<td>Multimodal considerations (ROAD-RAIL)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1b</td>
<td>OTHER inputs since 2017: BASF study on extra-large tank-containers/spigots and labelling of carrying wagons</td>
<td>1</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1b</td>
<td>OTHER inputs since 2017: central coupling and harmonised energy absorption</td>
<td>3, but 1 for testing recommended RID/ATMF approach with high level objectives set out in RID</td>
</tr>
<tr>
<td>1</td>
<td>2a - Vehicle authorisation process</td>
<td>7.1.1 (NOTE): Wagons are allowed to be equipped with detection devices which indicate or react to the occurrence of a derailment, provided that the requirements for the authorisation for placing into service of such wagons are met. The requirements for placing into service of wagons cannot prohibit or impose the use of such detection devices. The circulation of wagons shall not be restricted on the grounds of the presence or lack of such devices.</td>
<td>3</td>
<td>ERA/DGM OVE</td>
</tr>
<tr>
<td>1</td>
<td>2a</td>
<td>Respective roles of the railway NoBo and the tank assessing experts + proper use of standards 14025 and 12663</td>
<td>2</td>
<td>DE</td>
</tr>
<tr>
<td>1</td>
<td>2b - Vehicle authorisation process and actors involved (competent authority)</td>
<td>Conclusions of the Joint Meeting working group on inspection and certification of tanks. At the 2019 Joint meeting, the experts identified a possible risk for double inspection despite the certification of tanks. The inspection should be a possibility, but not a standard requirement in the vehicle authorisation. Competent Authorities should be able to trust the certification according to RID.</td>
<td>1</td>
<td>Secretariat</td>
</tr>
<tr>
<td>1</td>
<td>4c - Operation and maintenance Telematics and the TAF TSI</td>
<td>Possible interaction between TAF TSI and 1.4.2.2.5, 1.4.3.6 (b) and 5.4.0 of RID to be analysed</td>
<td>1</td>
<td>DE & FR</td>
</tr>
<tr>
<td>1</td>
<td>4d - Operation and maintenance process and rules</td>
<td>With the introduction of the concept of the entity in charge of maintenance (ECM) in RID 2017, this topic is an example of good coordination between both domains of law. This subject may require coordination in the future, for which this paper suggests a process.</td>
<td>2</td>
<td>Secretariat</td>
</tr>
<tr>
<td>1</td>
<td>4e - Operation and maintenance Safety responsibilities</td>
<td>Safety responsibilities of the actors as defined in Directive 2008/68/EC and Chapter 1.4 of RID, in relation to new Safety Directive (EU) 2016/798.</td>
<td>Priority 1, including taking</td>
<td>UIP</td>
</tr>
<tr>
<td></td>
<td>JCGE Priority Items</td>
<td>Last Updates: 20 November 2020</td>
<td>OTIF/RID/CE/JCGE/2020-A/Add.1</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>New working group created by UNECE identifying interfaces with ERA tasks</td>
<td>1 Chair of joint meeting and ERA</td>
<td>Items to be discussed under a new joint meeting working group. Follow and report on the outcome from the ERA workshops. (incl. CSM ASLP) Report on the latest progress and the state of play on the draft proposal on CSM ASLP.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5 b - Coordination processes between RID and general railway legislation For reporting of accident/incidents and statistics</td>
<td>2 Secretariat /UIC</td>
<td>JCGE to invite UIC to present their work on national rules on dangerous goods. Pending dialogue with UIC and pending availability of results.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>National provisions appear in different forms and are sometimes not very transparent. Besides national provisions, there may be arrangements at national level in the form of private agreements. In general, national requirements are not helpful for international harmonisation and the aim should therefore be to harmonise them or to remove them. The new coordination group, as suggested in this paper, could help in harmonising national rules which have their origin in the two domains of law (e.g. RID and the Safety Directive/national safety rules) or could give advice on removing them on the basis of one of the domains of law.</td>
<td>2or3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>For reasons of efficiency and clarity it is desirable that all vehicle requirements are checked in the process for admission or authorisation of the vehicles according to ATMF and Directive (EU) 2016/797 respectively. The group therefore supports the migration of vehicle requirements from RID to TSIs/UTPs by application of a mutually agreed process. It is noted that in the EU, TSIs for vehicles are applied before authorisation within the meaning of the EU Interoperability Directive. In principle, TSI requirements only apply to new, renewed or upgraded wagons. TSI requirements do not, in principle, apply retroactively to existing vehicles but TSI can – in defined cases – also apply to</td>
<td>2or3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
existing vehicles. RID provides the possibility to specify retroactive requirements and already does so by requiring the existing fleet to meet new provisions. A certain deadline (transitional period) for implementation may be defined by so-called transitional provisions. ATMF is consistent with RID in the sense that it makes direct reference to RID in Article 19 § 5.

4 a - Operation and maintenance Train composition: RID and the application of TSI OPE

Some RID terminology is similar to terminology used in the transport of dangerous goods by other transport modes. This explains why some terminology used in RID is different from terminology used in general railway legislation. This subject is not considered critical because where necessary, RID clarifies the terminology so that it can also be understood in terms of general railway legislation. Some examples: Carrier: company that transports the dangerous goods. The carrier according to RID is the railway undertaking that is effectively carrying out the transport. RID specifies that the wording of "tank-wagon operator" is equivalent to the wording "vehicle keeper". A table of correspondence, with explanations, where relevant, could be developed to help both sides understand the respective roles and responsibilities.

4 b - Operation and maintenance Actors and terminology: e.g. carrier vs RU, tank wagon operator vs keeper

6.8.2.1.29 The minimum distance between the headstock plane and the most protruding point at the shell extremity on tank-wagons shall be 300 mm. Alternatively for tank-wagons for substances other than those for which the requirements of special provision TE 25 of 6.8.4 (b) apply, buffer override protection of a design approved by the competent authority shall be provided. This alternative is only applicable to tank-wagons used solely on

3

1 b - Design and construction of vehicles: way of specifying; functional/technic al solutions

Consider whether to involve the NoBo
| 3 | 1b - Design and construction of vehicles: way of specifying; functional/technical solutions | 6.8.2.5.2 | The following particulars shall be inscribed on both sides of the tank-wagon (on the tank itself or on plates):
- vehicle keeper marking or name of operator;
- capacity
- unladen mass of tank-wagon
- load limits according to the characteristics of the wagon and the nature of the lines used;
- for the substances according to 4.3.4.1.3, the proper shipping name of the substance(s) accepted for carriage
- tank code according to 4.3.4.1.1
- for substances other than those according to 4.3.4.1.3, the alphanumeric codes of all special provisions TC and TE which are shown in column (13) of Table A of Chapter 3.2 for the substances to be carried in the tank; and
- date (month, year) of the next inspection in accordance with 6.8.2.4.2 and 6.8.2.4.3 or with the TT special provisions of 6.8.4 for the substance(s) accepted for carriage. If the next inspection is an inspection in accordance with 6.8.2.4.3, the date shall be followed by the letter "L". | 2 | Investigate more closely the interface between tank and vehicle. |
| 3 | 1b - Design and construction of vehicles: way of specifying; functional/technical solutions | Special provision TE 16 | No part of the tank-wagon may be of wood, unless this is protected by a suitable coating. | 3 | |
| 3 | 1b | Special provision TE 17. For demountable tanks, the following requirements apply:
- they shall be so fixed on the underframe of the wagon that they cannot move
- they shall not be interconnected by a manifold
- if they can be rolled, the valves shall be provided with protective caps. | 3 | |
| 3 | 1b | Special provision TE 25. Shells of tank-wagons shall also be protected against the overriding of buffers and derailment or, failing that, to limit damage when buffers override by at least one of the following measures. | 3 | |
Measures to avoid overriding. Device to protect against the overriding of buffers. The device to protect against the overriding of buffers shall ensure that the sub-frames of the wagons remain on the same horizontal level. The following requirements shall be fulfilled:

The device to protect against the overriding of buffers shall not interfere with the normal operation of the wagons (for example negotiating curves, Berne rectangle, shunter's handle).

The device to protect against the overriding of buffers shall permit the free taking of curves by another wagon fitted with a device to protect against the overriding of buffers in a curve of 75 m radius).

The device to protect against the overriding of buffers shall not interfere with the normal functioning of the buffers (elastic or plastic deformation) (see also special provision TE22 in 6.8.4 (b)).

The device to protect against the overriding of buffers shall function independently of the condition of the load and the wear and tear of the wagons concerned.

The device to protect against the overriding of buffers shall withstand a vertical force (upwards or downwards) of 150 kN.

The device to protect against the overriding of buffers shall be effective irrespective of whether the other wagon concerned is fitted with a device to protect against the overriding of buffers. It shall not be possible for devices to protect against the overriding of buffers to obstruct each other.

The increase in the overhang for fixing the device to protect against the overriding of buffers shall be less than 20 mm.

The width of the device to protect against the overriding of buffers shall be at least as big as the width of the buffer head (with the exception of the device to protect against the overriding of buffers located above the left-hand footboard, which
shall be tangent to the free space for the shunter, although the maximum width of the buffer must be covered).

A device to protect against the overriding of buffers shall be located above every buffer.

The device to protect against the overriding of buffers shall permit the attachment of buffers prescribed in standards EN 12663-2:2010 Railway applications – Structural requirements of railway vehicle bodies – Part 2: Freight wagons and EN 15551:2009 + A1:2010 (Rail-way applications – Railway rolling stock – Buffers) and shall not present an obstacle to maintenance work.

The device to protect against the overriding of buffers shall be built in such a way that the risk of penetration of the tank end is not increased in the event of a shock.

Measures to limit damage when buffers override

Increasing the wall thickness of the tank ends or using other materials with a greater energy absorption capacity. In this case, the wall thickness of the tank ends shall be at least 12 mm. However, the wall thickness of the ends of tanks for the carriage of gases UN 1017 chlorine, UN 1749 chlorine trifluoride, UN 2189 dichlorosilane, UN 2901 bromine chloride and UN 3057 trifluoroacetyl chloride shall in this case be at least 18 mm. Sandwich cover for tank ends. If protection is provided by a sandwich cover, it shall cover the entire area of the tank ends and shall have a specific energy absorption capacity of at least 22 kJ (corresponding to a wall thickness of 6 mm), which shall be measured in accordance with the method described in Annex B to EN standard 13094 "Tanks for the transport of dangerous goods – Metallic tanks with a working pressure not exceeding 0.5 bar – Design and construction". If the risk of corrosion cannot be eliminated by structural measures, it shall be made possible to undertake an inspection of the external wall of the tank end, e.g. by providing a removable cover.

Protective shield at each end of the wagon

If a protective shield is used at each end of the wagon, the following requirements shall apply:
- the protective shield shall cover the width of the tank in each case, up to the respective height. In addition, the width of the protective shield shall, over the entire height of the shield, be at least as wide as the distance defined by the outside edge of the buffer heads.
- the height of the protective shield, measured from the top edge of the headstock, shall cover either two thirds of the tank diameter or at least 900 mm and shall in addition be equipped at the top edge with an arresting device for climbing buffers.
- the protective shield shall have a minimum wall thickness of 6 mm.
- the protective shield and its attachment points shall be such that the possibility of the tank ends being penetrated by the protective shield itself is minimized.

1b

Protective shield at each end of wagons fitted with automatic couplers. If a protective shield is used at each end of the wagon, the following requirements shall apply:

- the protective shield shall cover the tank end to a height of at least 1100 mm, measured from the top edge of the headstock, the couplers shall be fitted with anticreep devices to prevent unintentional uncoupling and the protective shield shall, over the entire height of the shield, be at least 1200 mm wide.
- the protective shield shall have a minimum wall thickness of 12 mm.
- the protective shield and its attachment points shall be such that the possibility of the tank ends being penetrated by the protective shield itself is minimized.
- The wall thicknesses specified in (b), (c) and (d) above relate to reference steel. If other materials are used, except if mild steel is used, the equivalent thickness shall be calculated in accordance with the formula in 6.8.2.1.18. The values of R_m and A to be used shall be specified minimum values according to material standards.

3

3 a - Design and construction of vehicles: decision-making process/criteria for

The group recognises that the RID/TDG and CTE/RISC have their respective decision-making processes, including impact assessment, consultation processes etc. These processes are not called into question. It is now, and might be in future, the harmonisation of decision-making processes is already addressed by another workflow organised by the Agency (TDG Roadmap) with the participation of TDG experts. This subject is already...
new provisions, impact assessment and consultation process. Interface analysis between subsystems within the railway system is necessary to coordinate views on certain topics. For this reason, two priorities are suggested in this paper concerning:

- **Priority items:** The consensual migration of vehicle related RID requirements to TSIs/UTPs, which constitutes specific implementation of the general process described in section 2.
- **Lower priority items** which may also need to be addressed in the future by the general coordination process described in section 2.

“Regardless of this transitional provision, the vehicle and its documentation shall comply with the prescriptions in force of the UTP concerning marking and maintenance; compliance with the prescriptions of RID in force shall also be ensured, where applicable…”. If existing vehicle related requirements are transferred from RID to TSIs/UTPs, the possibility needs to be ensured of retroactive application of requirements in TSIs/UTPs to existing vehicles.

| Inland TDG risk management framework, when necessary. | coordinated, and when available, the results of this workflow may help the JCGE. JCGE sees no need to deal with this item. However, OTIF and DGMOVE/ERA may consider preparing an overview of the revision cycle of RID requirements, UTP and TSI in order to assess the need for coordination. |