

Organisation intergouvernementale pour les transports internationaux ferroviaires Zwischenstaatliche Organisation für den internationalen Eisenbahnverkehr Intergovernmental Organisation for International Carriage by Rail

INF. 2

12 November 2018

(English only)

- RID: 16th Session of the RID Committee of Experts' working group on tank and vehicle technology (Krakow, 19 and 20 November 2018)
- Subject: Risk assessment of extra-large tank-containers

Information from CEFIC

BASF

We create chemistry

F002

NORT FERRE

VEL- D-BASE

CHANCE RISK-ASSESSMENT RID Committee of Experts

CHANCE – An integrated solution of innovations...

...to optimize the rail & site logistics

Conventional rail transport

Intermodal transport Rail & Road

CHANCE – Fully automated Tank-Container Terminal (TCL)

Capacity [TEU]	2.000		
Container Stacking	6 (1+5)		
Portal crane	2		
Tracks under crane	3		
Truck/AGV docking station	8		
Operational since	7/2018		

CHANCE – Automated Guided Vehicle (AGV)

Autonomous driving mode	Transponders & Sensors	
Tele-operation	Transponders, Sensors & Control-Center	AAA Lanfor
Lenght AGV	16,5 m	
Payload AGV	78 Tonnen	
Accuracy	± 3cm	
Number / transport volume	8 / 1 million tons per year	

CHANCE – innovative container carrying wagon (iCTW)

CHANCE – innovative container carrying wagon (iCTW)

CHANCE – Technical Changes iCTW

Component	Change	Reason	
Innovative Container-Carrying-Wagon (iCTW)			
Spigot	reinforced, stronger materials	optimised for higher load	
Buffer	Long-Stroke-Buffer (C-Buffer) 150 mm instead of 105 mm	Shunting-yard capability	
Wagon-Frame	material, geometry	5-L, optimised for B-TC	
Brakes	45' – Disk-brakes 52' – CFCB	Noise-reduction & Life-Cycle	

CHANCE – innovative Container Carrying Wagon (iCTW) Approval & Facts

	TÜV Rheinland Genau. Richtig.
	über die EG-Prüfung des Teilsystems lauart Sgmmnss 45' gemäß Zeichnung N-232-00-00-00-0 nach Modul SB
Bericht-Nr.:	TRRC/B 17/301
Datum des Berichtes:	12.07.2017
Seitenzahl:	14
Bewertungsgegenstand:	Containertragwagen der Bauart Sgmmnss 45' gemäß Zeichnung N-232-00-00-0
Auftraggeber / Hersteller;	Tatravagonka a.s. Stefanikova 887/53 SK – 058 01 Poprad
Auftragnehmer:	TÜV Rheinland Rail Certification B.V. Benannte Stelle Interoperabilität Bahn (NoBo 1010) gem. Richtlinie 2008/57/EG Arthur van Schendelstraat 600 3511 MJ Utrecht The Netherlands Registration Dossier No. 24.226994 TRRC@de.tuv.com
Abteilung:	RST – Rolling Stock
TÜV Rheinland Auftragsnummer:	13104565
Angebotsnummer/Datum:	TRRC11716 Rev.1 / 15.11.2016
Leitender Gutachter:	DiplIng. Tobias Marchand
Reviewer:	DiplIng. Jan Wächter
Begutachtungsergebnis:	Es wurden keine Abweichungen von den Anforderungen der /TSI_WAG/ und /TSI_NOI/ an das Teilsystem festgestellt.
Die Ergebnisse beziehen sich ausschließlic che Genehmigung des Auftragnehmers we werden.	h auf den Bewertungsgegenstand. Dieser Bericht darf ohne ausdrückliche schriftli- der auszugsweise veröffentlicht, vervielfältigt noch auszugsweise weitergegeben

iCTW	Count in total 342
In traffic	202
Ordered	140 more in manufacturing process

CHANCE – BASF Class Tank-Container (B-TC)

CHANCE – BASF Class Tank-Container (B-TC)

CHANCE – Facts & Figures BASF Class Tank-Container

B-TC	Count in total 950
In traffic	350
Ordered	600 more already in manufacturing

Specification	L4BH	L4BH	L4BH	L4DH	L10BH	L10DH
	standard			specialized		
Length [ft]	45	45	52	45	45	45
Volume [l]	63.000	53.500	73.000	62.000	63.000	62.000
Heating	х	х	х	-	х	х
Insulation	Х	х	х	-	х	х
Lining	-	-	-	Х	-	-

Motivation & Objectives Risk-Assessment

8th Session of the RID Committee of Experts' standing working Group

Subject: Extra-large tank-containers

Information and Question from Switzerland Questions regarding the impacts of this innovation related to the risks inherent with the transport of dangerous goods.

BASF Class tank-containers are certified and approved since June 2015 for the transport of dangerous goods and since June 2015 in use without incidents.

In January 2018 BASF agreed to conduct a Risk-Assessment according to CSM – VO (EU) 402/2013

Based on the results BASF intends to propose adjustment suggestions to the current regulations of the conventional and intermodal transport.

Scope of the Risk-Assessment

Comparison of the new equipment vs. conventional & intermodal equipment

Organization Risk-Assessment

Risk-Assessment – Technical University of Berlin

Support for technical analysis, trails, impact-tests, simulations & documentation

Faculty Mechanical Engineering and Transport Systems

Institute of Land and Sea Transportation Systems Department of Rail Vehicles, Prof. Dr.-Ing. M. Hecht

Research: vehicle dynamics, safety, acoustics, telematics, etc. *Services:*

- MKS-Simulations
- FE-Models & Analysis
- driving behavior data collection & analysis
- safety assessment

Risk-Assessment – Bureau Veritas

Independent assessment body

Bureau Veritas Exploitation France

Rail Operations

Ms. B. Scaglione

Services:

- Third-party assessment (notified body)
- Technical and safety assistance
- Conformity of Assessment
- Certification (ECM, IRIS)

Risk-Assessment Prozess

Risk-Assessment according to CSM – VO (EU) 402/2013

Work packages Risk-Assessment

Comparison and Assessment of the innovative Intermodal System (B-TC & iCTW)

Based on technical documentation

WP

FE-modelling and analysis

- Simulation between different systems
- Detection of particular stressed positions

- Different loadings
- Data collection of forces and accelerations

- WP 5 Impact-Tests

- Overriding Impact-Test of different equipment
- Voluntarily and additionaly to CSM requirements

-WP 3

Modelling and simulation of the driving behaviour

- Simulation of system limits
- Based on collected and technical data

 Voluntarily and additionaly to CSM requirements

D BASE

Work package 1 – Paper based technical comparison

Comparison of:

- used material
 - material specification
 - material strength
 - etc.
- technical specification
 - payload
 - gross weight, etc.

for the different system

Objectives:

- System definition
- Risk-Analysis & Detection
- Risk-Evaluation

Work package 2 – Experimental examinations of the driving behaviour

- S-Curve ride
- Loading: 100 %, 50 % & 0 %
- Data gathering: Forces / Acceleration
 - Data-base for simulations
- Comparison of the driving behavior

Work package 3 – Modelling and simulation of the driving behaviour

- Assessment of vehicle dynamics
- Comparison of different systems
- Simulation via SIMPACK
- Different simulation scenarios with increasing velocity till failure
 - S-Curve
 - Curve with cant and distortion
 - Crash
 - Specific Topology
- Analysis of Simulation results

Work package 4 – FE-Modelling and Analysis of Crash-Scenarios

- FE-Modelling of crash scenarios between different systems
- Scenario: Overriding with different velocities
- Analysis and evaluation of occurring forces & damages

Work package 5 – Impact-Tests

- Impact-Scenario Overbuffering / Overriding
- Experimental assembly based on simulation results (tbd.)
- Comparison of the damage pattern between compared systems
- Analysis of damages

Voluntarily and additionaly to CSM requirements

Work package 6 – Longterm Trails

- Data collection of accelerations at B-TC & iCTW in realistic cases
- Analysis of critical impacts
- Analysis of acceleration differences between B-TC & iCTW

Risk-Assessment schedule

Risk-Assessment – expected results

F

Risk-Evaluation of different systems

- Repercussions of the technical changes
- Scientific comparison between new, conventional and intermodal systems

Suggestions for existing regulations

- Tank Construction (e.g. different wall-thickness for the three investigated systems)
- 20t load for disc brakes
- Labelling for handling of new system (crane & spigots)
- Additional safety measures for a few chemicals (e.g. increased distance between tank and buffers)
- Minimum filling degree in rail transport (80/20 regulation for tank containers)

BASE We create chemistry