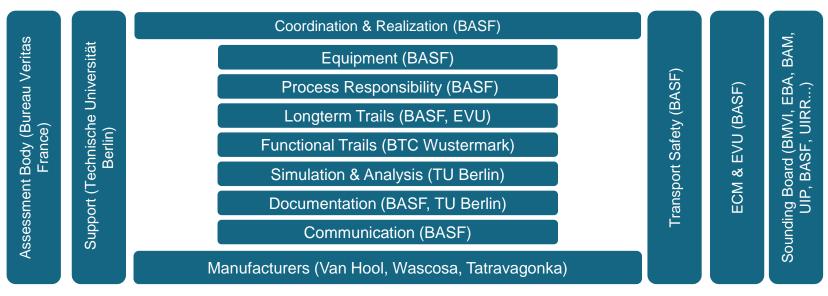


Risk Assessment BASF Class Tank Container

Technical University of Berlin | Department of Rail Vehicles

| 15.10.2019


Prof. Dr.-Ing. Markus Hecht Gökhan Katmer, M.Sc. Matthias Gülker, M.Sc. Qiuyong Tian, M.Sc. Ulrich Deghela, M.Sc.

Motivation & Objectives of the Risk Assessment

- BASF Class Tank Containers are certified and approved since 2015 for the transport of dangerous goods and since 2017 in use without incidents
- In 2018 BASF started a voluntary Risk Assessment according to

CSM – VO (EU) 402/2013

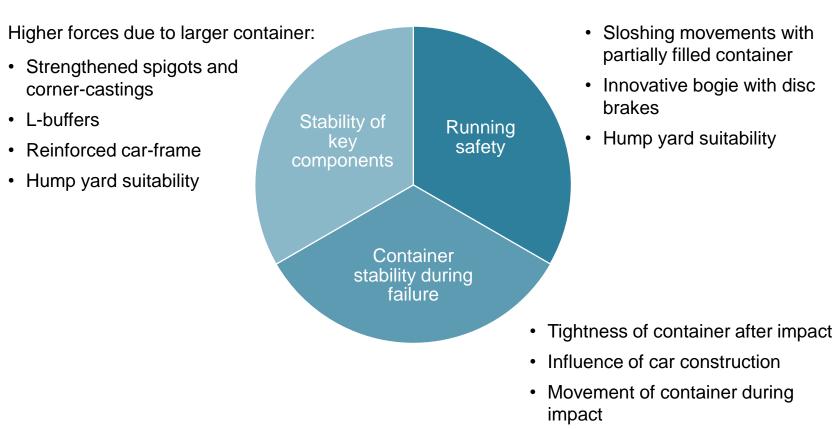
System comparison

- New System

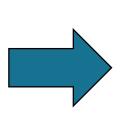
- B-TC on iCTW
- Bogies TVP-NBS
- L-Buffers
- Strengthened spigots and corner-castings

- Rail Tank Car
- Approved bogies Y25
- A-Buffers

-Conventional Systems


Technische Universität Berlin berlin

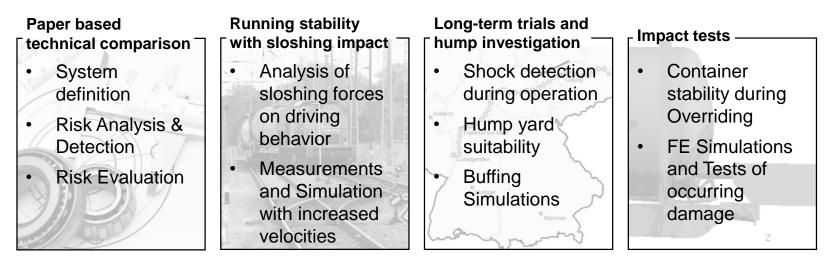
- ISO-Tank Container on intermodal car
- Approved bogies Y25
- A-Buffers
- Tank size up to 26'


Influences of system adaption

Scope of Risk Assessment

Comparison of _____

- Technical specifications
- Driving behavior
- System limits
- Sloshing movements

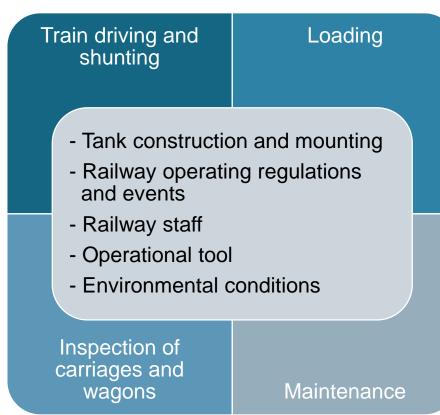

Comparison by ____

Driving trails

berlin

Technische Universität Berlin

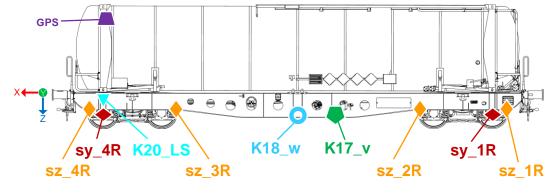
- Simulations
- Impact-tests
- Data analysis



Martin Martin Contraction of the Contraction of the

Paper based technical comparison

- Based on technical standards / RID requirements
- Identification of critical components
- Comparison of reference values
 for container materials
- Exposure of identified system modifications:
 - Hazard Identification
 - Hazard Management
 - Risk Evaluation

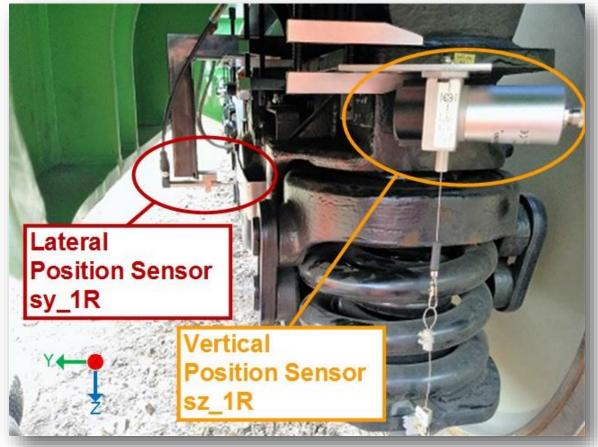

Investigation of sloshing movements ("Schwall")

Investigation Test vehicle		Track	Velocity	
	45' B-TC on 45' iCTW (BTC45)		10, 15, 20 and 25 km/h	
Exporimont	45' B-TC on 52' iCTW (BTC52)	Double		
Experiment	2x 20' TC on 40' CTW (TC2x20)	S-Curve r = 190 m		
	2x 26' TC on 60' CTW (TC2x26)			
	45' B-TC on 45' iCTW (BTC45)	Curve	Curve up to 150 km/h	
Simulation	45' B-TC on 52' iCTW (BTC52)	r = 500 m		
Simulation	3x 20' TC on 60' CTW (TC3x20)	and S-Curve	S-Curve	
	Rail Tank Car	r = 150 m	up to 70 km/h	

Risk Assessment BASF Class Tank Container | Dep. Rail Vehicles | 15.10.2019

Experimental investigation

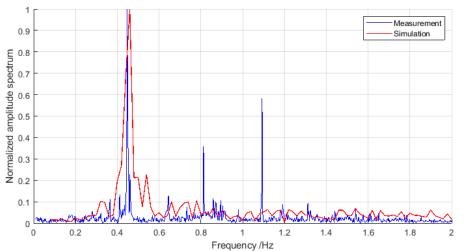
- Measurement of running stability with evaluating influence of liquid sloshing:
 - Full / partially loaded / empty
 - Different velocities
- Data acquisition for simulation models
- Comparison of different systems

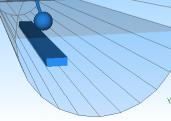


	Measurement	Location
\blacklozenge	Vertical Position Sensor	Bogie
٢	Lateral Position Sensor	Bogie
	Velocity Sensor	Car Body
	GPS Sensor	Container
0	Gyroscope	Car Body
	Photoelectric barrier	Car Body

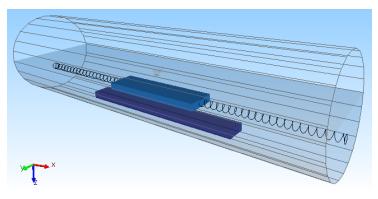
Measurement equipment for lateral and vertical movement

Simulation of sloshing movements


- Approximation of critical states at increasing velocities
- Evaluating different operation scenarios

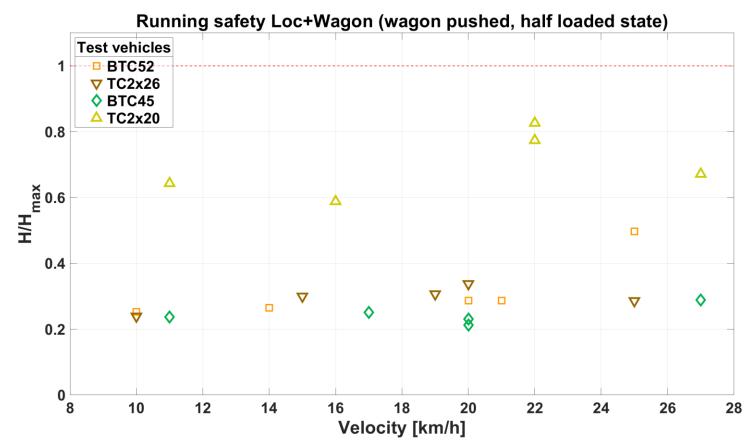

Risk Assessment BASF Class Tank Container | Dep. Rail Vehicles | 15.10.2019

Sloshing model


- Simplified mechanical models for lateral and longitudinal sloshing: Pendulum / Spring-Mass-System
- Validation with measurements from investigation of sloshing movements

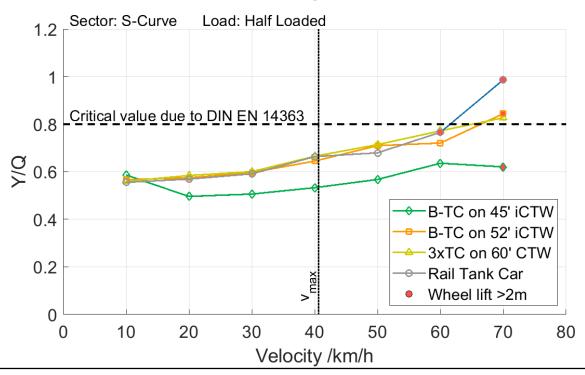
Risk Assessment BASF Class Tank Container | Dep. Rail Vehicles | 15.10.2019

Longitudinal

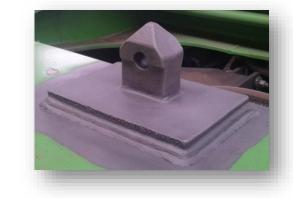


10/46

Experimental results of the investigation



Risk Assessment BASF Class Tank Container | Dep. Rail Vehicles | 15.10.2019


Simulation results of investigation

No critical sloshing movements are detected during the measurements and simulations

Long-term trials

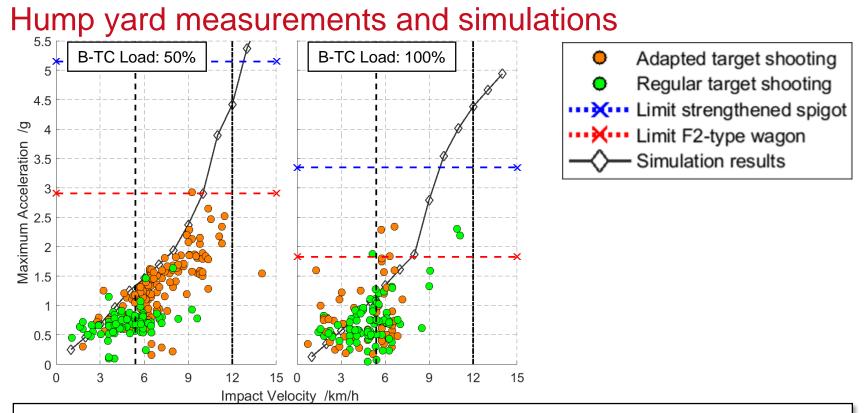
- Evaluation of accelerations and forces on critical components (spigots, buffers)
- Comparison of fully and partially loaded B-TC on 45' iCTW with conventional intermodal car
- Testing areas:
 - Shuttle operation Ludwigshafen \leftrightarrow Schwarzheide (\sum 15,000 km)
 - Hump yard (∑ 250 runs / load status)
- Execution of non-destructive testing on spigots and corner-casting to detect failures
- Data processing: LPF 16 Hz (EN 12663-2)

Instrumentation

Sensor Measurement 1-axis Accelerometer at container 1-axis Accelerometer at car **GPS Sensor** ● * 恩 ۲ (**Ö**t O GPS K04_ax K01_ax K05_ay K02_ay K03_az K01_ax K04_ax K02_ay K05_ay K03_az GPS ΟσΘ

Equipment

	Set 3	Set 4	Set 5	Set 11
Wagon type	45' iCTW	45' iCTW	45' iCTW	60' CTW
Container type	45' B-TC	45' B-TC	45' B-TC	2x 26' TC
Load	Full	Full	Half	Full
Operation	Shuttle (LU-SH)	Hump yard	Hump yard	Hump yard
Goods	MEG	MEG	Water	MEG


Shuttle measurements

- No excess of longitudinal (left) and lateral (right) acceleration limits between the destinations
- 16 Runs Ludwigshafen-Schwarzheide and Ludwigshafen-Antwerp 52° Antwerpen Antwerpen Schwarzł Schwarz Leipzig Leipzid Köln Köln 51° 51° Kobler Koble 50° rankfurt am Mair 2.8 a 50° rankfurt am Mair Longitude 2.6 g Longitude 2.4 g 2.2 q dwigshafe udwigshafe 0.9 g 2 g 1.8 g 0.8 g 49° 49° 1.6 g 0.7 g I.4 g Stuttgart Stuttgar 0.6 g l.2 g 0.5 a l a 0.4 a 0.8 g München München 48° 48° 0.3 g 0.6 q 0.2 g 0.4 g 0.1 g 0.2 g 47° 47 6° 12° 6° 4° 8° 10° 14° 4° 8° 10° 12° 14° Latitude Latitude Longitudinal limit 3g Lateral limit 1g

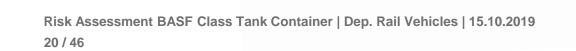
Risk Assessment BASF Class Tank Container | Dep. Rail Vehicles | 15.10.2019

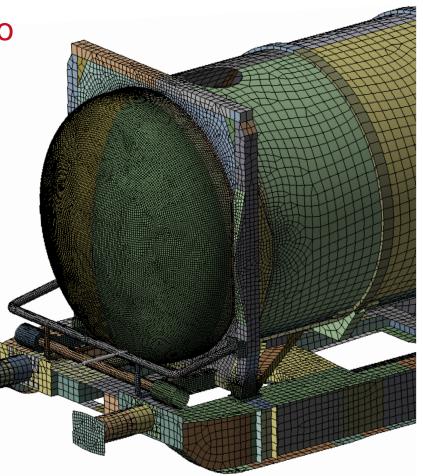
No critical states during measurements and simulations detected

No damage at examined components detected

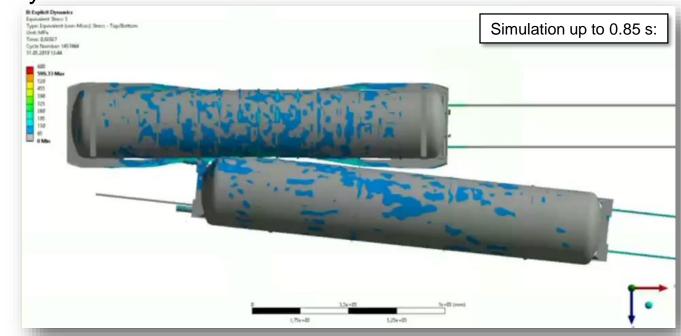
Impact tests

Evaluation of damage on overriding cars and derailment collision


Equipment

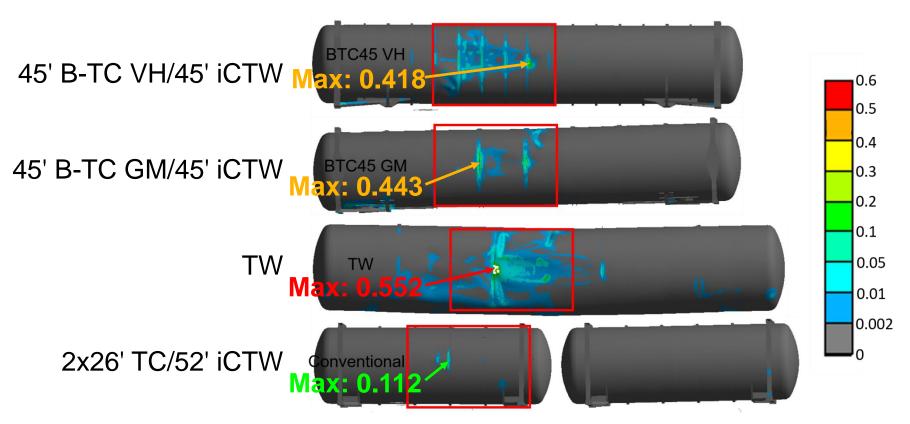

Investigation	Testyshiele	Velocity [km/h]		
Investigation	Test vehicle	Simulation	Experiment	
Side-on and	45' B-TC (Van Hool) on 45' iCTW (BTC45 VH)		15.0 and 18.6	
frontal impact simulation and Frontal impact experiment	45' B-TC (Magyar) on 45' iCTW (BTC45 GM)	Side on: 25 Frontal:	15.0	
	Tank wagon (TW) Zacens	15 and 19	14.6	
	2x 26' TC on 52' iCTW (Conventional)		15.1	
Frontal impact	45' B-TC (Van Hool) on 52' iCTW (BTC52 VH)	15	14.0	

- Models with up to 2.5x10⁶ elements
- Analysis of material failure
 - Maximal tension
 - Maximal strain
- Execution with different velocities



Side-on impact simulation

- Additional modelling of bogies
- Simplified rail-wheel contact
- Impact velocity: 25 km/h


Material properties of the tank shell

Tank	Van Hool	Magyar	Tank wagon	Conventional
A ₁ [%]	50	48	35	43
Number of vaccum rings	deleted	deleted	deleted	deleted
Thickness of vaccum rings [mm]	deleted	deleted	deleted	deleted
Head Wall Thickness [mm]	7.9	5.65	8.0	5.2
Shell thickness [mm]	3.4	4.5	6.3	4.2

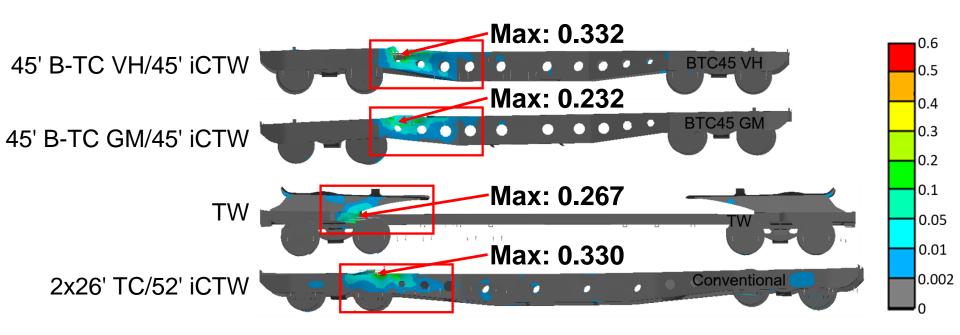
Plastic strain distribution on the impacted tank

Plastic strain distribution on the impacted tank

Max plactic strain:

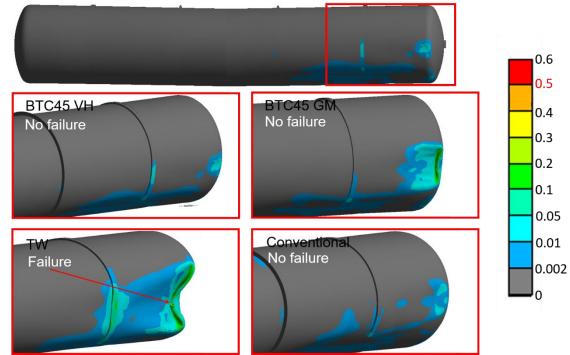
45' B-TC VH/45' iCTW - Max 0.418

45' B-TC GM/45' iCTW - Max 0.443


TW – Max 0.552

2x26' TC/52' iCTW – Max 0.112

Plastic strain distribution on the impacted wagon

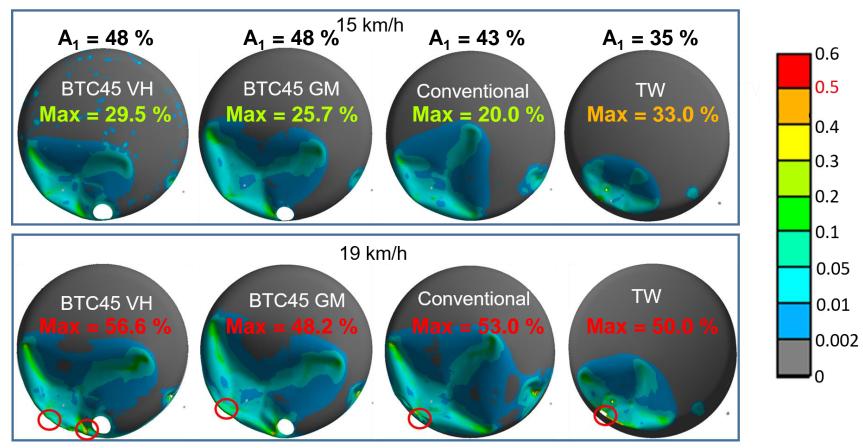


Advantage of the longitudinal beams of the iCTW against tank wagon Reasonable impact force ratio of the tank to the wagon

Plastic strain distribution on impacting tank

Most deformation in case of side-on impact between tank wagons Both tanks failed!

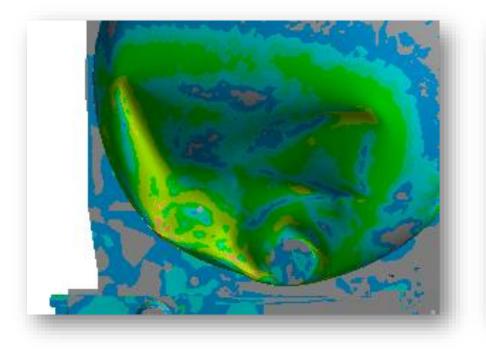
Simulation results of side-on impact


Safety reserve = 1- Max. plastic Strain / A1

		TW-	TW-	TW-	TW-
	r	BTC45 VH	BTC45 GM	ТW	Conventional
A₁/Max. Strain	Investigated tank	50/ 41.8	48/ 44.3	35/ <mark>55.2</mark>	43/ 12.2
	Safety reserve of investigated tank	16.4 %	7.8 %	-57.7 %	71.6 %
	Stationary car body	20/ <mark>33.2</mark>	20/ <mark>23.2</mark>	20/ <mark>26.7</mark>	20/ <mark>33.0</mark>
	Impacting tank	35/ 7.0	35/ 23.1	35/ 35.1	35/ 4.3
	Impacting car body	20/ 25.6	20/ <mark>26.3</mark>	20/ 12.7	20/ <mark>30.1</mark>

Plastic strain distribution on tank bottom

Simulation results of frontal impact

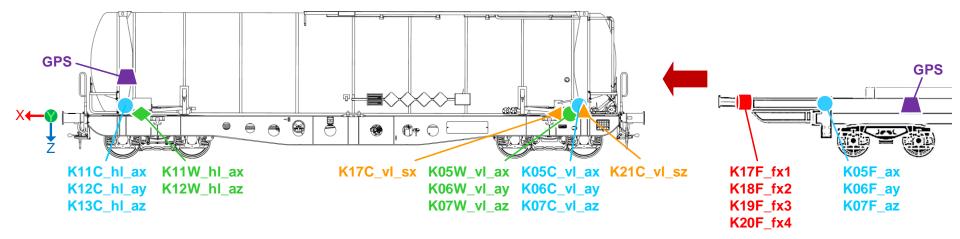

Safety reserve = 1- Max. plastic Strain / A1

	Tank Material Norm	Thickness Head / Shell [mm]	Equiv. Head Thickness [mm]	Equiv. Shell Thickness [mm]	Safety reserve (V _{imp} = 15km/h)	Safety reserve (V _{imp} = 19km/h)
тw	1.4571 DIN 17440	6.3 / 6.3	9.15	9.15	5.71 %	-42.86 %
Conventional	1.4404 SANS 50028-7	5.2 / 4.2	9.23	7.46	53.49 %	-23.26 %
BTC45 VH		7.9/3.4	15.82	7.07	38.54 %	-17.92 %
BTC45 GM	1.4402 SANS 50028-7	5.65 / 4.5	11.31	9.01	46.46 %	-0.42 %
BTC52 VH		7.9/3.4	15.82	7.07	100 %	n.a.

Impact test execution

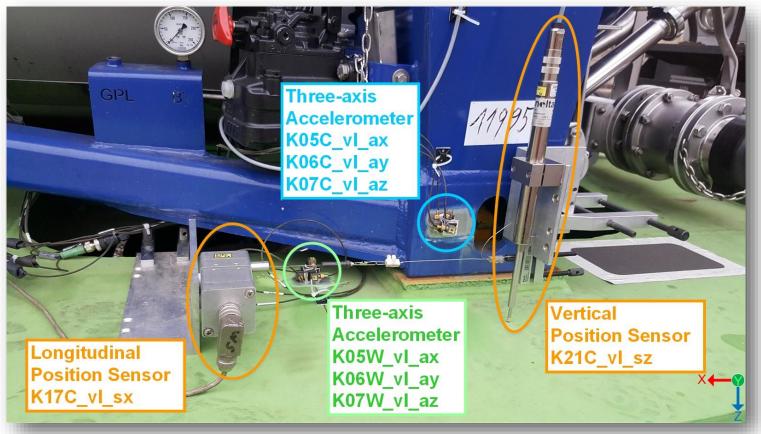
Impacting wagon

Flat wagon Rs 671 as an impacting wagon

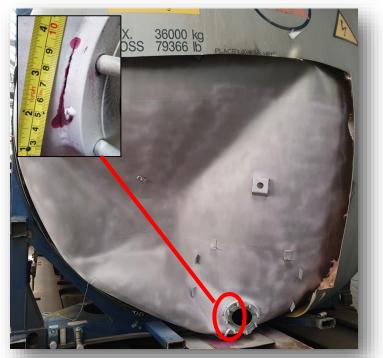


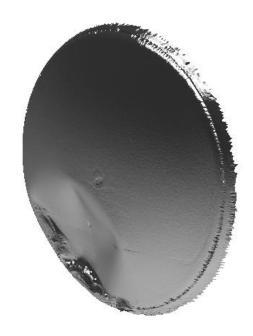
Instrumentation

- Measuring:
 - Accelerations & velocities
 - Container movement
 - Impact forces

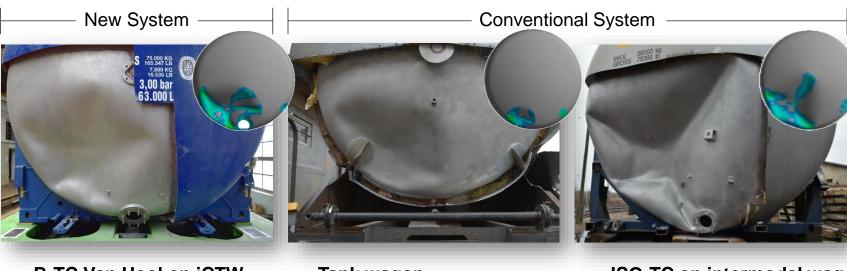

	Measurement	Location
	3-axis Accelerometer	Car Body
٠	2-axis Accelerometer	Car Body
	3-axis Accelerometer	Container
	GPS Sensor	Container
	Longitudinal Position Sensor	Car Body
	Vertical Position Sensor	Car Body
	Force transducer	Impacting Buffer

Measurement equipment on B-TC/iCTW System (front left)




Impact test evaluation

Crack testing per liquid penetrant inspections



Risk Assessment BASF Class Tank Container | Dep. Rail Vehicles | 15.10.2019

Deformation of tank per 3D-Scan

1: Different Systems

- B-TC Van Hool on iCTW
- Equiv. thickness in mild steel:

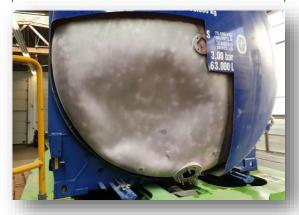
 (calculated acc. RID §6.8)
 Shell Head
 - 7.1 mm 15.8 mm
- No leakage
- Deformation: 90 I

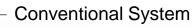
Risk Assessment BASF Class Tank Container | Dep. Rail Vehicles | 15.10.2019

- Tank wagon
 - Equiv. thickness in mild steel: Shell Head 9.2 mm 9.2 mm
- No leakage
- Deformation: 100 I

ISO-TC on intermodal wagon

Technische Universität Berlin berlin

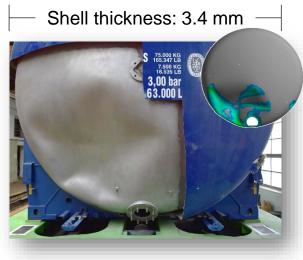

- Equiv. thickness in mild steel: Shell Head 7.5 mm 9.2 mm
- No leakage
- Deformation: 390 I

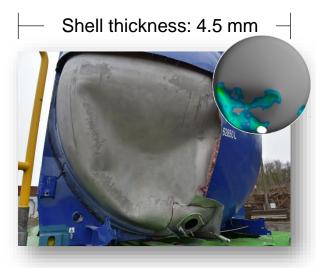


1: Different Systems – PT Results

- New System

Anzeige 1 55mm

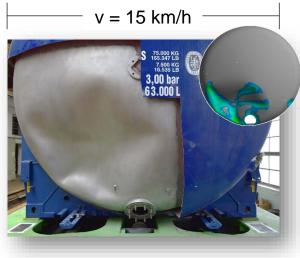

- v = 15 km/h
- No crack on BTC VH
- Cracks on conventional systems



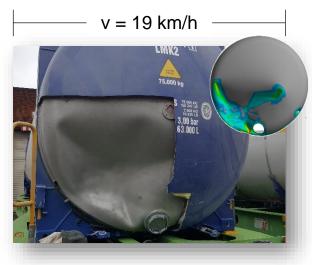
2: Shell thickness

- Equiv. shell thickness: 7.1 mm
- Equiv. head thickness: 15.8 mm
- Deformation: 90 l

- Equiv. shell thickness: 9 mm
- Equiv. head thickness: 11.3 mm
- Deformation: 190 I

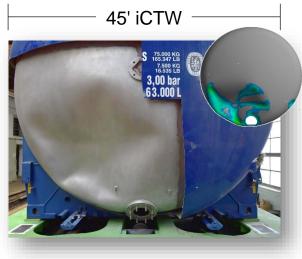

No deformation at frame and cylinder surface on either containers

Comparable deformation at container bottom



3: Increased velocity

- Shell thickness: 3.4 mm
- Head thickness: 7.9 mm
- Deformation: 90 l


- Shell thickness: 3.4 mm
- Head thickness: 7.9 mm
- Deformation: 210 I

Increasing deformation with increasing velocity - no leakage

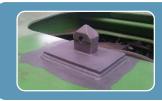
4: Increased car length

- Shell thickness: 3.4 mm
- Head thickness: 7.9 mm
- Deformation: 90 l

- Shell thickness: 3.4 mm
- Head thickness: 7.9 mm
- Deformation: 0 I

Impact car stopped by bogie before reaching container with 52' iCTW

Conclusions for running safety



New System with comparable running stability on straight tracks, curves and at hump yard

Detected sloshing movements with no effect to driving safety

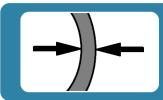
 Specific filling degree for containers in rail transport not recommended → adjust to Rail Tank Cars (RID -chapter 1.6.4.33)

No damage on new, high-strength spigots

• New components suitable for all intermodal transport units (EN 12663-2, RID -chapter 6.8.2.1.2)

No damage on any component after hump yard tests

 All loaded iCTW suitable for hump yard (EN 12663-2)



Conclusions for failure status / Impact

- RTC only vessel with leakage for side impact
- Safety level of conventional system exceeded
- Longitudinal beams of iCTW improve safety for side impacts

Minimum shell thickness with no effect on frontal impact safety

- Amendment of regulations for minimum shell thickness not necessary (RID -chapter 6.8.2.1.17; 6.8.2.1.18; 6.8.2.1.19 and 6.8.2.1.20)
- No leakages for all systems equivalent safety level.

The larger distance between tank-head and buffer of the Rail Tank Car has no positive safety effect compared to the B-TC

Minimum distance not recommended for TC / B-TC (RID -chapter 6.8.2.1.29)

- A positive safety effect for both systems can only be reached by a significant distance increase
- Safe replacement for Crash-buffers and overbuffering protection (RID TE25)

Technical University of Berlin

Gökhan Katmer, M.Sc. Matthias Gülker, M.Sc. Qiuyong Tian, M.Sc. Ulrich Deghela, M.Sc.

Department of Rail Vehicles

Office SG 14

berlin

Salzufer 17-19, D-10587 Berlin, Germany

Phone: +49 (0)30 314 - 25195 (Secretariat)

Fax: +49 (0)30 314 - 22529

www.schienenfzg.tu-berlin.de