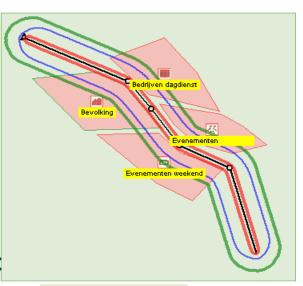
QRA in the Netherlands

RID working group Standardized Risk Analysis 19 June 2008

Tineke Wiersma Department of Safety, Transport, Public Works and Water Management

Contents

- Risk criteria
- General approach
- Available models and software
- Substance categories
- Scenarios, event trees, failure frequencies, consequences
- Overview of the software

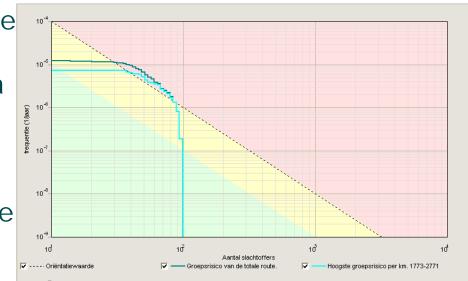


Risk criteria: individual risk

 Individual risk (location specific risk)
Probability per year that a person who stays permanently and unprotected on a place along the route dies due to an transport accident with dangerous substances

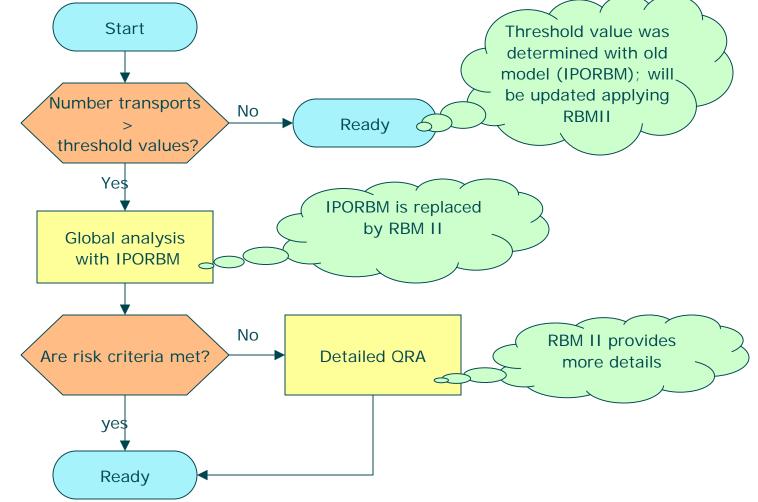
- Connect points with the same probability risk contour
- 10⁻⁶ location specific risk contour
 - Limit value for vulnerable objects for new situations
 - Guide value for limited/not vulnerable objects

Risk criteria: societal risk


Probability per year per km-transport route that a group of 10 persons or more dies due to a transport accident with dangerous substances on the transport route

Societal risk: guide value

- When risk has increased or has exceeded the guide value the competent authorities have to give a motivation on the acceptability of the risk
- Investigate if risk reducing measures can be taken (ALARA)
- Elaborate possibilities for self-rescue and emergency response


Standardized approach

- Guidelines for QRA described in Purple Book (1999): Publication series on dangerous substances (PGS 3), Guideline for quantitative risk analysis
 - Establishments and transport
- Updated version in progress,
 - Calculation protocol Railway (2005)
 - Protocol Sea- and inland waterways (2005)
- Free software made available by ministry of Transport:
 - First version IPORBM 1997
 - New, extended version RBMII (2005), recently updated

	Guideline for quantitative risk assessment				
	'Purple book'				
	CPR 18E				
e	Part one: Establishments				
	dr. P.A.M. Uijt de Haag dr. B.J.M. Ale				
	RVIM				

General and standardized approach (PGS3, Purple Book)

Threshold values rail transport

Individual risk contour 10⁻⁶ contour can occur with quantities larger than:

	High speed	Low speed
Number of flammable liquids (C3, tank cars/year)	3000	No 10 ⁻⁶ contour
Total number of dangerous subst. (tank cars/year)	7000	No 10 ⁻⁶ contour

Exceeding of guide value societal risk:

- Dominated by transport of LPG
- Depends on intensity of population along route
- Example:
 - Population density of 100 persons per hectare on one side of the route, and 1600 tank cars at high speed leads to exceeding of guide value

Standardized software: RBM II

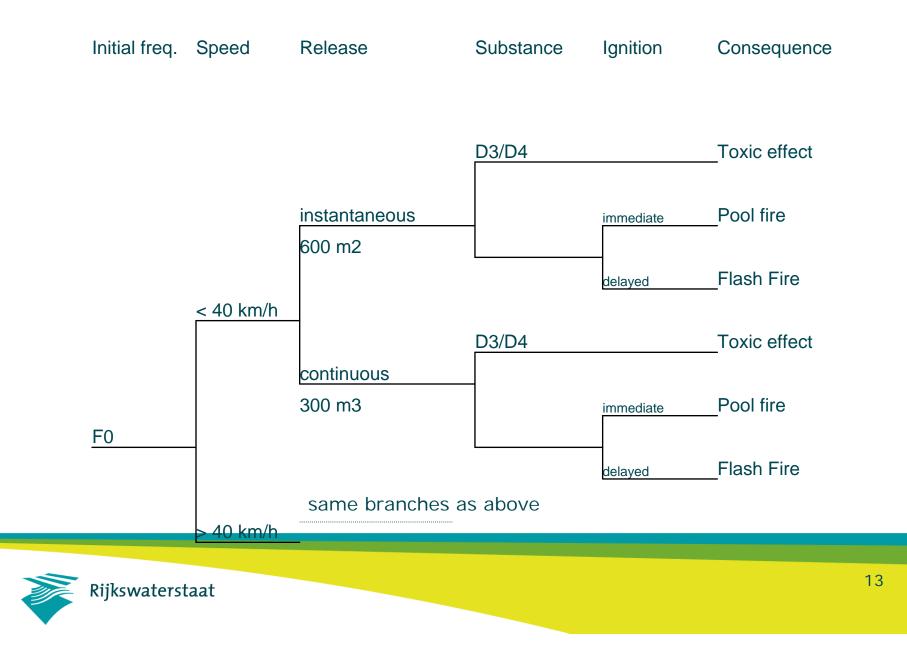
- Used for calculation op IR and SR: to check if there is a conflict between transport activities and urban development
 - Module road traffic
 - Module railway traffic
 - Module inland waterways
- Only a limited set of input data is necessary
- Most transport QRA in the Netherlands are performed with RBMII (> 80%?)
- 624 registered users

Applicability of RBMII

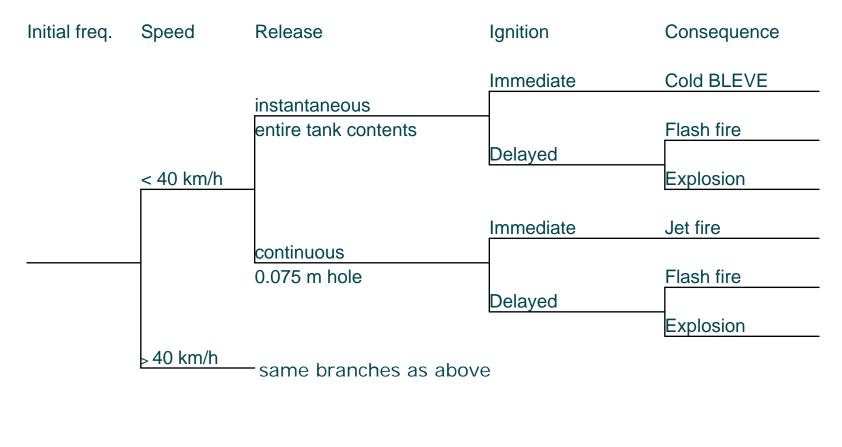
- Suitable for standard situations, on-going traffic, open air situations, flat land
- Representative for most special situations such as lower or higher situated tracks, tracks with windscreens, crossings.
- Not to be used for private sidings and shunting yards
- Not suitable for waterways with more than 10% sea ships
- More detailed analysis necessary for tunnels and complex railway situations

The standard risk analysis

- Calculation of individual risk and societal risk
- Determine probabilities and consequences of accidents with dangerous substances
 - Flammable liquids
 - Toxic liquids
 - Flammable (liquefied) gasses
 - Toxic (liquefied) gasses



Substances categories


Category	Rail	Road/waterway	Repr. subs. RBMII
Flam. Liquid	C3	LF1	Heptane
		LF2	Pentane
Tox. liquid	D3	LT1	Acrylonitril
		LT2	
	D4	LT3	Acroleine
Flam. gas		GF1	Etheenoxide
		GF2	n-Butane
	А	GF3	Propane
Tox. gas		GT2	Methylmercaptane
	B2	GT3	Ammonia
		GT4	Chlorine
	B3	GT5	Chlorine

Scenarios: liquids

Scenarios: flammable gasses

Domino-effect of poolfire

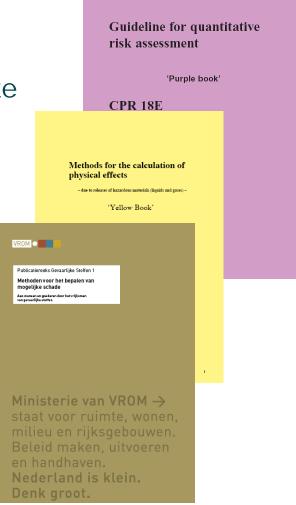
_Hot BLEVE

Failure frequencies (rail)

- Initial failure frequency
 - ► High speed track: 2.77 ·10⁻⁸ per wagon per kilometre
 - ► Low speed track: 1.36 ·10⁻⁸ per wagon per kilometre
 - ► 0.8 ·10⁻⁸ per wagon per kilometre for each level crossing
 - 3.3 ·10⁻⁸ per wagon per kilometre for a kilometre track with set of points
- Failure frequencies based on Dutch accident data period 1981-1992
- Update with new data will be performed this year

Failure frequencies (2) (rail)

- Based on accident data (13 damaged railway tankers)
- Probability of outflow:


Category	Speed < 40 km/h	Speed > 40 km/h
Flam. Liquid	0.079	0.56
Toxic. Liquid	0.0079	0.056
Flam. Gas	0.00079	0.0028
Toxic. gas	0.00079	0.0028

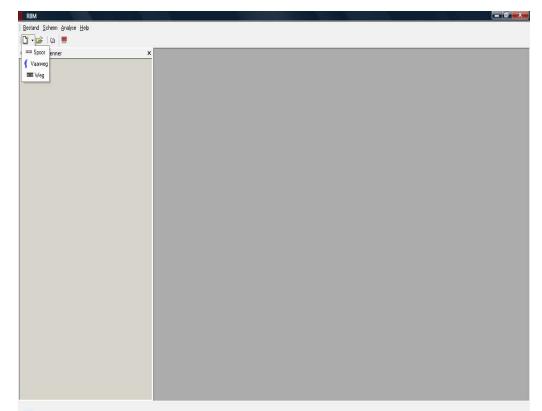
- Ratio instantaneous and continuous release: 0.4 : 0.6
- Probability ignition flammable liquid: 0.25
- Ignition flammable gas, inst. release: immediate: 0.8 Ignition flammable gas, cont. release: immediate: 0.5
- Flam. Gas, flash fire vs. explosion: 0.6 vs. 0.4

Basic assumptions consequence modelling

- Flammable and toxic liquids: pool size is fixed
- Inventory pressurized tanks
 - Flammable gasses: 48 tonnes
 - Toxic gasses; 50 tonnes
- Prescribed models for dispersion, exposure damage same as used for installations, prescribed in
 - Purple Book (PGS3),
 - Yellow Book (PGs2),
 - Green Book (PGS1)
- Use of meteorological data:
 - 6 weather classes,
 - 12 wind directions,
 - data available from 18 weather stations

Consequences, some results

- Flammable liquids:
 - ► Pool fire: *consequence. distances 10-30 metres*
- Flammable gasses:
 - Continuous release, immediate ignition: jet fire: ca. 80x 30 m
 - Instantaneous release, immediate ignition : BLEVE: 100% let in radius van ca. 150 meter
 - Instantaneous or continuous release, delayed ignition: Flash fire or explosion size gas cloud ca.145 bij 45 m.
- Toxic liquids:
 - Pool evaporation, exposure to toxic gasses: 1% lethality at several hundreds metres depending on substance, weather conditions
- Toxic gasses (ammonia, chlorine):
 - exposure to toxic gasses: 1% lethality at several kilometres depending on substance, weather conditions


Calculation of risks

- Risks are calculated by placing accident points along the route:
 - Individual risk every 10 metre (railway, road)
 - Societal risk every 25 metre (railway, road)
- Check for each location and each scenario which areas are affected and cumulate results:
 - Lethality rate per location: individual risk contours
 - Number of casualties per scenario: FN-curves, for transport calculates per km transport route

An overview of the standardized software RBMII

- Input of data:
 - Type of transport
 - Project data
 - Weather data
 - Data on the route
 - Transported substances:
 - Category, amount
 - Length, type, etc.
 - Build environment
- Calculation
- Analyse results
 - ► FN-curve
 - Individual risk
 - Reports

